

All I/O is Random I/O

Flash Memory Summit 2013

Thom Denholm 1 Technical Product Manager

Talking Points

- Performance diffs sequential/random
 Contribution of Database on Android
- Benchmarks (measuring RAM)
- Write Amplification
- Correcting with Software
- Other expectations (ACID, lifetime)

101011

Sequential I/O looks great

Random I/O not as good

Android and SQLite

AndroBench – Erase Counts 3000 2500 2000 1500 1000 500 0 Datalight ext4 ext4 ext4 ext4

Each erase represents 2k of data written

Measuring Cache and Buffers

0010110101110001 L01100101001110010100

AndroBench

Write Amplification

- 4k file, minimum 512 byte write size
- Flash system Metadata
- File system Metadata & Directory Info

101011

Correcting with Software

- Align writes to match Flash media
- Write sequentially where possible
- Collect writes into Atomic groups

 Best match to underlying firmware
 10

0010110101110001 L01100101001110010100

Flash Media Lifetime

Figure 1 | A life cycle and ECC comparison of NAND flash by process node shows how an increase in correction capability is not enough to maintain endurance of the memory cell.

Summary

- Performance Benchmarks need to account for RAM and Use Case

 Ideally on the embedded target
- Software can improve access to the media and reduce overhead & Write Amplification
- Added benefits to Flash Media Lifetime and Reliability

