
Flash Data Fabric:
A Substrate for Flash Optimizing Applications

 Brian O’Krafka, Fellow

 August 15, 2013

2

Overview

§  Flash Optimization: Why and How

§  Some Examples:
•  In-Memory Data Grids
•  In-Memory Databases
•  NoSQL Databases

§  Conclusion

3

Software Unlocks Flash Potential in
the Enterprise

FLASH + SOFTWARE

New SAN
Architecture

In-Memory
Databases

Cold
Storage

Big Data
Analytics

Virtualization &
Cloud

Computing

Server-side
Caching

Flash as replacement for 15k RPM HDD
3

4

Flash Optimization:
Why and How

5

Flash-Optimized Applications and FDF
§  Flash-optimized applications:

•  Exploit the high capacity, low latency, persistence and high throughput of flash memory
•  Have extensive parallelism to enable many concurrent flash accesses for high throughput
•  Use DRAM as a cache for hot data
•  Get in-DRAM performance at in-flash capacity and cost, enabling server consolidation

§  SanDisk Flash Data Fabric (FDF) is a substrate for flash-optimized applications
•  Caching, key-value stores, databases, message queues, custom apps
•  Leverages flash for high performance, high availability
•  Enables low TCO through high server consolidation
•  Executes on bare metal or virtualized

§  Many applications realize limited benefits from flash without system level
optimization

•  FDF incorporates the flash optimizations required to fully exploit flash
•  Applications can be fully flash-optimized using FDF

§  FDF incorporates:

•  Intelligent granular DRAM caching
•  Heavily optimized access paths for high performance
•  Optimized threading to maximize concurrency and minimize response time
•  Configurable flash management algorithms to optimize different workloads

6

In-Memory Data Grids

7

Example 1: Memcached
§  Memcached is an open-source distributed key-value memory caching

system

§  Originally developed by Danga Interactive for LiveJournal

§  Commonly used to reduce load on databases. Applications typically:
•  look for data in memcached
•  if not found, access the database and insert into memcached
•  memcached uses LRU replacement to make room for new objects

§  Memcached service offered by leading cloud service providers

§  Provides a basic “CRUD” key-value interface (Create, Replace, Update,

Delete)

§  FDF-Memcached based on Memcached version 1.4.15

§  Compare against Couchbase, an open source version of memcached
supporting persistence on flash

8

Memcached/FDF Performance

Configuration TPS FDF Cache Miss
Rate

CPU
Utilization

Flash
Utilization

FDF-
Memcached

285K 10% 8/24 90%

Couchbase
2.0.1

35K N/A N/A 10%

memslap 90% Read, 10% Write

" Intel Westmere server with 2 x 2.9GHz sockets, 24 cores, 96G DRAM

" SSD: 8 x 200G SSD with software RAID 0

" Memslap Benchmark set-up
§  Remote client with 10G network connection
§  1K fixed object, uniform distribution with configurable read/write mix

(eg: 90% read, 10 % update)

" 20GB FDF DRAM cache

9

In Memory Databases

10

Example 2: Redis
§  Redis (REmote DIctionary Server) is an open-source, in-

memory key-value store with some persistence capabilities

§  Supports more complex data types:
•  strings, hashes, lists, sets, sorted sets

§  Additional features beyond memcached:
•  asynchronous replication to 1 or more slaves
•  snapshot facility using fork() + copy-on-write
•  append-only logging with configurable fsync() policy
•  pub/sub capability

§  Single-threaded

§  FDF-Redis prototype based on Redis 2.7.4

11

Redis Benchmark Environment
" “Bare Metal”:

"   Intel Westmere server with 2 x 2.9GHz sockets, 24 cores, 96G DRAM
"   SSD: 8 x 200G SSD with software RAID 0

" AWS:

"   16 Core CPU, 64G Memory AWS CentOS, SSD enabled instance

" YCSB Benchmark set-up:
§  Bare Metal: Remote client with 10G network connection
§  AWS: client on same instance as server (to avoid network bottleneck)
§  1K fixed object, uniform distribution with configurable read/write mix

(eg: 95% read, 5 % update)

" For Redis:
§  FDF-Redis: 32 threads, 32G Redis cache and 4G FDF cache
§  Hash, list, set and sorted set use 10 x 100 byte fields as object

12

FDF-Redis Performance (“Bare Metal”)

116	

84	

93	

70	

93	

132	

101	

114	

99	

89	

0	

20	

40	

60	

80	

100	

120	

140	

String	
 Hash	
 List	
 Set	
 Sorted	
 Set	

KT
PS
	

Stock	
 Redis	
 (in	

memory)	

FDF-­‐Redis	
 	
 (out	
 of	

memory)	

FDF-Redis Throughput with Data Set in Flash matches
Stock -Redis throughput with data set in DRAM

13

Redis Results on AWS (Using “Hash” Data Structure with
Stock Redis data in DRAM FDF-Redis data in Flash)

Stock Redis,
33,000

Redis FDF in
flash, 50,000

0

10,000

20,000

30,000

40,000

50,000

60,000

Stock Redis,
100%

Redis FDF in
flash, 800%

0%

200%

400%

600%

800%

1000%

Stock Redis,
0%

Redis FDF in
flash, 98%

0%

20%

40%

60%

80%

100%

120%

TPS CPU Utilization

Flash
Utilization

14

TCO : Stock Redis vs FDF-Redis (bare metal)
requirement : 80k TPS and 1 TByte data set

Department Name

 $-

 $50,000

 $100,000

 $150,000

 $200,000

 $250,000

Stock Redis with DRAM 96GB Servers FDF-Redis with Flash

3 Year OpEx

3 Year CapEx

15

TCO : Stock Redis vs FDF-Redis (AWS)
requirement : 80k TPS and 1 TByte data set

Department Name

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Stock-Redis AWS in DRAM FDF-Redis AWS with SSD

3 Year TCO

TCO

16

NoSQL Databases

17

Example 3: Cassandra
§  Cassandra is an open source distributed key-value store

§  Key features:

•  support for large scale synchronous and asynchronous replication,
including across data centers

•  automatic fault-tolerance and scaling
•  tunable consistency (from “writes never fail” to “block for all replicas to be

readable”)
•  efficient support for large rows (1000’s of columns)
•  CQL (SQL-like) query language
•  supports multiple indices

§  Optimized for high write workloads

§  FDF-Cassandra prototype based on Cassandra 2.1.4

18

Cassandra Performance
95/5 workload Stock Cassandra FDF Cassandra

Hard Drives 1.2k tps
100% HDD utilization

1 of 16 cores utilization

N/A

64GB Data (fits in memory)

40K tps
12 of 24 cores utilization

124K tps
18 of 24 cores utilization

256GB Data (data set in
flash)

25K tps
90% flash utilization

18 of 24 cores utilization

95K tps
90% flash utilization

19 of 24 cores utilization

" Intel Westmere server with 2 x 2.9GHz sockets, 24 cores, 96G DRAM

" SSD: 8 x 200G SSD with software RAID 0

" YCSB Benchmark set-up
§  Remote client with 10G network connection
§  1K fixed object, uniform distribution with configurable read/write mix

(eg: 95% read, 5 % update)

" 48GB FDF DRAM cache

19

TCO : Cassandra
requirement : 80k TPS and 1 TByte data set

Department Name

 $378,216

 $55,620

 14,124

$10,000

$100,000

$1,000,000

Stock Cassandra on HDD stock Cassandra in DRAM FDF-Cassandra and Flash

TCO - Log Scale

3 Year OpEx

3 Year CapEx

20

Conclusion

21

Conclusion
§  Many applications realize limited benefits from flash without optimization

§  Flash optimization of applications can yield near in-DRAM performance
with the datasets spilling into flash

§  Critical flash optimizations include:

•  Intelligent granular DRAM caching
•  Heavily optimized access paths for high performance
•  Optimized threading to maximize concurrency and minimize response time
•  Granular locking for high concurrency

§  Flash optimizations have been encapsulated in the SanDisk Flash Data

Fabric (FDF): a substrate for flash-optimized applications
•  Typical applications: caching, key-value stores, databases, message queues, custom

apps
•  Leverages flash for high performance, high availability
•  Enables low TCO through high server consolidation
•  Proof points: memcached, redis, cassandra

22

Complete Top to Bottom Capabilities

Full Stack Enables Segment Optimized Solutions

Performance Scalability System
Utilization Endurance Cost Life Cycle

CONTROLLER NAND TECH NAND DIE WAFER SCALE MFG SSD SOFTWARE

Enterprise Storage Solution - Confidential

Thank you!

