Creating Flash-Aware Applications
Nisha Talagala

© 2013 Fusion-io, Inc. All rights reserved.




K NVM (Flash, other) is different from Disk
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% /0 and Memory Access for Flash
Aware Applications

FUSION-IO

I/O semantics examples:
* Open file descriptor — open(), read(), write(), seek(), close()
* (New — presented today) NVM Primitives
* (New — presented today) NVM KV Store

Volatile memory semantics example:
 Allocate virtual memory, e.g. malloc()
* memcpy/pointer dereference writes (or reads) to memory address
* (Improved — presented today) Page-faulting transparently loads data from NVM into memory

Memory
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https://opennvm.github.10

OpenNVM

Welcome to the open source project for creating new interfaces for
non-volatile memory (like Fash).

http://www.opencompute.org/projects/storage/
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3 Contributions to the Community Fusion-io

Current OpenNVM Repositories

Flash-aware Linux swap Key-value interface to flash Flash programming primitives
When working set size exceeds the capacity of DRAM, Create NoSaL databases faster. Automate garbage Use built-in characteristics of the Flash Translation Layer
demand page from a flash-aware virtual memory collection of expired data. to perfrom journal-less updates (more performance and

SUDS‘)’SI'BH"I. less flash wear = lower TCO]
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1st Contribution: Flash Primitives FUSION-iO

On GitHub:

» API specifications, such as:
* nvm_atomic_write()
* nvm_batch_atomic_operations()
* nvm_atomic_trim()

Flash programming primitives
Use built-in characteristics of the Flash Translation Layer ° Sample program code

to perfrom journal-less updates (more performance and
less flash wear = lower TCO)

ELEIGL  Learn More
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Flash Primitives: sample Uses and Benefits FUSION-io

Databases 98% performance of raw writes
Smarter media now natively
understands atomic updates, with
no additional metadata overhead.

Transactional Atomicity:
Replace various workarounds
implemented in database code to

provide write atomicity (MySQL o
double-buffered writes, etc.) 2x longer flash media lire
Atomic Writes can increase the life

of flash media up to 2x due to

Filesystems reduction in write-ahead-logging

File Update Atomicity: and double-write buffering.

Replace various workarounds

implemented in filesystem code 50% less code in key modules
to provide file/directory update Atomic operations dramatically
atomicity (journaling, etc.) reduce application logic, such as

journaling, built as work-arounds.



Atomic Writes — MySQL Example

Traditional MySQL Writes
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Application
initiates updates
to pages A, B,
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updated pages to
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FUSION-IiO’

MySQL with Atomic Writes
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Database

Server
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ioMemory Database

Application
initiates updates
to pages A, B,
and C.

MySQL copies
updated pages to
memory buffer.

MySQL writes to
actual tablespace,
bypassing the
double-write buffer
step due to
inherent atomicity
guaranteed by the
(intelligent) device.

August 15, 2013




%

MySQL Example: Latency Improvement

FUSION-IO

2-4x Latency Improvement on Percona Server

Sysbench 99% Latency
OLTP workload
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MySQL Example: Throughput Improvement

FUSION-IO

70% Transactions/sec Improvement on MariaDB Server
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2"d Contribution: Linux Fast-Swap

Flash-aware Linux swap

When working set size exceeds the capacity of DRAM,
demand page from a flash-aware virtual memaory
subsystem.

FEWLEIGO Learn More

On GitHub:

« Documentation

» Experimental Linux kernel with
virtual memory swap patch

(3.6 kernel)

« Benchmarking utility

FUSION-IO
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Improving Linux Swap (Demand-paging)  Fusionio

Originally designed as a last resort to prevent OOM (out-of-memory) failures
* Never tuned for high-performance demand-paging
* Never tuned for multi-threaded apps
* Poor performance

System Memory ioMemory/Flash

Tuned for flash (leverages native characteristics)
* O(1) algorithm for swap_out — reduce algorithm time and leverage fast random I/O
» Per CPU reclaim — greater throughput for multi-threaded environments
* Intelligent read-ahead on swap-in — cut legacy, disk-era cruft for rotational latency
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Fast Swap - Performance FUSiON-iO

3x reduction in load completion time with fast swap
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3'd Contribution: Key-Value Interface rusionio

% On GitHub:
API specifications, such as:

nvm_kv_put()

* nvm_kv_get()

« nvm_kev_batch_put()
: « nvm kv set global expir
Key-value interface to Flash _kv_set_global_expiry()

Create NoSQL databases faster. Automate garbage
collection of expired data.

Sample program code

2ELI0L  Learn More

Benchmarking utility

Source code (30 Aug)
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Key-Value Interface: sample Uses and Benefits

NoSQL Applications

Increase performance by eliminating
packing and unpacking blocks,
defragmentation, and duplicate
metadata at app layer.

Reduce application I/O through
batched operations.

Reduce overprovisioning due to lack
of coordination between two-layers
of garbage collection (application-
layer and flash-layer). Some top
NoSQL applications recommend
over-provisioning by 3x due to this.

FUSION-IO

Near performance of raw device
Smarter media now natively understands
a key-value I/O interface with lock-free
updates, crash recovery, and no
additional metadata overhead.

3x throughput on same SSD
Early benchmarks comparing against
synchronous levelDB show over 3x
improvement.

Up to 3x capacity increase
Dramatically reduces over-provisioning
through coordinated garbage collection
and automated key expiry.
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Key-Value Interface - Performance

Key-Value get/put vs. Raw read/write vs. levelDB read/write

FUSION-IO
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OpenNVM, Standards, and Consortiums

opennvm.github.io
Primitives API specifications, sample code
Linux swap kernel patch and benchmarking tools
key-value interface API library, sample code, benchmark tools

INCITS SCSI (T10) active standards proposals:

SBC-4 SPC-5 Atomic-Write
http://www.t10.org/cqgi-bin/ac.pl?t=d&f=11-229r6.pdf

SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.0rg/cqgi-bin/ac.pl?t=d&f=12-086r3.pdf

SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.0rg/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

SNIA NVM-Programming TWG draft guide:

http://snia.org/forums/sssi/nvmp

FUSION-IO
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Join us at opennvm.github.io FusioN-io

Current OpenNVM Repositories

2y

Flash-aware Linux swap Key-value interface to flash Flash programming primitives
When working set size exceeds the capacity of DRAM, Create NoSaL databases faster. Automate garbage Use built-in characteristics of the Flash Translation Layer
demand page from a flash-aware virtual memory collection of expired data. to perfrom journal-less updates (more performance and

subsystem. less flash wear = lower TCO)
Repository Learn More
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