Creating Flash-Aware Applications
Nisha Talagala

© 2013 Fusion-io, Inc. All rights reserved.

K NVM (Flash, other) is different from Disk

Logical to Physical
Blocks

Read/Write
Performance

Sequential vs Random
Performance

Background operations

Wear out
IOPS

Latency

August 15, 2013

Nearly 1:1 Mapping

Largely symmetrical

100x difference. Elevator
scheduling for disk arm

Rarely impact foreground

Largely unlimited writes
100s to 1000s

10s ms

Fusion-io Confidential

Remapped at every write

Heavily asymmetrical.
Additional operation
(erase)

<10x difference. No disk
arm — NAND die

Regular occurrence. If
unmanaged - can impact
foreground

Limited writes
100Ks to Millions
10s-100s us

FUSION

% /0 and Memory Access for Flash
Aware Applications

FUSION-IO

I/O semantics examples:
* Open file descriptor — open(), read(), write(), seek(), close()
* (New — presented today) NVM Primitives
* (New — presented today) NVM KV Store

Volatile memory semantics example:
 Allocate virtual memory, e.g. malloc()
* memcpy/pointer dereference writes (or reads) to memory address
* (Improved — presented today) Page-faulting transparently loads data from NVM into memory

Memory

August 15, 2013 3

FUSION-IO

https://opennvm.github.10

OpenNVM

Welcome to the open source project for creating new interfaces for
non-volatile memory (like Fash).

http://www.opencompute.org/projects/storage/

August 15, 2013 4

%

3 Contributions to the Community Fusion-io

Current OpenNVM Repositories

Flash-aware Linux swap Key-value interface to flash Flash programming primitives
When working set size exceeds the capacity of DRAM, Create NoSaL databases faster. Automate garbage Use built-in characteristics of the Flash Translation Layer
demand page from a flash-aware virtual memory collection of expired data. to perfrom journal-less updates (more performance and

SUDS‘)’SI'BH"I. less flash wear = lower TCO]

GG Learn More EESI I Learn More

August 15, 2013 5

%

1st Contribution: Flash Primitives FUSION-iO

On GitHub:

» API specifications, such as:
* nvm_atomic_write()
* nvm_batch_atomic_operations()
* nvm_atomic_trim()

Flash programming primitives
Use built-in characteristics of the Flash Translation Layer ° Sample program code

to perfrom journal-less updates (more performance and
less flash wear = lower TCO)

ELEIGL Learn More

§ — e 15, 200 A

%

Flash Primitives: sample Uses and Benefits FUSION-io

Databases 98% performance of raw writes
Smarter media now natively
understands atomic updates, with
no additional metadata overhead.

Transactional Atomicity:
Replace various workarounds
implemented in database code to

provide write atomicity (MySQL o
double-buffered writes, etc.) 2x longer flash media lire
Atomic Writes can increase the life

of flash media up to 2x due to

Filesystems reduction in write-ahead-logging

File Update Atomicity: and double-write buffering.

Replace various workarounds

implemented in filesystem code 50% less code in key modules
to provide file/directory update Atomic operations dramatically
atomicity (journaling, etc.) reduce application logic, such as

journaling, built as work-arounds.

Atomic Writes — MySQL Example

Traditional MySQL Writes

Page Page Page
A B C
Database

Server

DRAM [Page|Page Page
Buffer [NATEBES S C

Page Page Page
A B C

SSD (or HDD) Database

Application
initiates updates
to pages A, B,
and C.

MySQL copies
updated pages to
memory buffer.

MySQL writes
to double-write
buffer on the
media.

Once step 3 is
acknowledged,
MySQL writes
the updates to
the actual
tablespace.

FUSION-IiO’

MySQL with Atomic Writes

Page Page Page
A B C
Database

Server

DRAM |[Page [Page [Page
Buffer [RAEB

ioMemory Database

Application
initiates updates
to pages A, B,
and C.

MySQL copies
updated pages to
memory buffer.

MySQL writes to
actual tablespace,
bypassing the
double-write buffer
step due to
inherent atomicity
guaranteed by the
(intelligent) device.

August 15, 2013

%

MySQL Example: Latency Improvement

FUSION-IO

2-4x Latency Improvement on Percona Server

Sysbench 99% Latency
OLTP workload

Ll

104
207
310
413
516
619
722
825
928
1031
1134
1237
1340
1443

1546
1649
1752
1855
1958
2061
2164
2267
2370
2473
2576
2679
2782
2885

wn

econds

2988
3091

3194
3297

3400
3503

—— XFS DoubleWrite
___Atomic Writes

%

MySQL Example: Throughput Improvement

FUSION-IO

70% Transactions/sec Improvement on MariaDB Server

NewOrderTXN
10sec

16000

14000

12000

10000

(00}
o
o
o

6000

4000

2000

XtraDB 5.5.30 - Atomics
TPC-C - 2500 warehouses
230GB data - 50GB buffer pool

—— Atomic Writes

—— Ext4 No-DoubleWrite

—— Ext4 DoubleWrite

[NeoNeoNoNoNoNoNolololololololNololNoloNolNolololoNoNoNoNe)
EVOTNORROITNONVOTNONOITNOW®OITANO ®
S OO NOOANSTS OO dMWON~NOONTOND ML O
= A A A A A A NNNNNOOOOONIT I I

o

Sec

o

nas

4860

eNoNoNoNololololololoNe)
SANOOOITNOOWO TN
ONSOLONOOOAIdMIT O© 0O
LWL OO OO O~

%

-

2"d Contribution: Linux Fast-Swap

Flash-aware Linux swap

When working set size exceeds the capacity of DRAM,
demand page from a flash-aware virtual memaory
subsystem.

FEWLEIGO Learn More

On GitHub:

« Documentation

» Experimental Linux kernel with
virtual memory swap patch

(3.6 kernel)

« Benchmarking utility

FUSION-IO

_ August 15, 2013

11

%

Improving Linux Swap (Demand-paging) Fusionio

Originally designed as a last resort to prevent OOM (out-of-memory) failures
* Never tuned for high-performance demand-paging
* Never tuned for multi-threaded apps
* Poor performance

System Memory ioMemory/Flash

Tuned for flash (leverages native characteristics)
* O(1) algorithm for swap_out — reduce algorithm time and leverage fast random I/O
» Per CPU reclaim — greater throughput for multi-threaded environments
* Intelligent read-ahead on swap-in — cut legacy, disk-era cruft for rotational latency

%

Fast Swap - Performance FUSiON-iO

3x reduction in load completion time with fast swap

2500000

~2x improvement in page-out rate

2000000 m— . . .
~3.5x improvement in page-in and out rate

(%]
(2]
s 1500000 —
-
o e=mmDefault OS-Swap
£ 1000000 ~
% e===|mproved OS-Swap

500000 ~3x reduction in load completion time

0 100 200 300 400 500 600 700 800
Time

% “
.

3'd Contribution: Key-Value Interface rusionio

% On GitHub:
API specifications, such as:

nvm_kv_put()

* nvm_kv_get()

« nvm_kev_batch_put()
: « nvm kv set global expir
Key-value interface to Flash _kv_set_global_expiry()

Create NoSQL databases faster. Automate garbage
collection of expired data.

Sample program code

2ELI0L Learn More

Benchmarking utility

Source code (30 Aug)

August 15, 2013 14

%

Key-Value Interface: sample Uses and Benefits

NoSQL Applications

Increase performance by eliminating
packing and unpacking blocks,
defragmentation, and duplicate
metadata at app layer.

Reduce application I/O through
batched operations.

Reduce overprovisioning due to lack
of coordination between two-layers
of garbage collection (application-
layer and flash-layer). Some top
NoSQL applications recommend
over-provisioning by 3x due to this.

FUSION-IO

Near performance of raw device
Smarter media now natively understands
a key-value I/O interface with lock-free
updates, crash recovery, and no
additional metadata overhead.

3x throughput on same SSD
Early benchmarks comparing against
synchronous levelDB show over 3x
improvement.

Up to 3x capacity increase
Dramatically reduces over-provisioning
through coordinated garbage collection
and automated key expiry.

%

Key-Value Interface - Performance

Key-Value get/put vs. Raw read/write vs. levelDB read/write

FUSION-IO

Ops/s

160000

140000

120000

100000

80000

60000

40000

20000

0

GET v READ

1

2

4 8
Threads

16

450000
400000
350000
300000

© 250000
egme| eveldb-sync

al=NVMKV

Raw device

[%2])

o
O 200000
150000
100000
50000

PUT v WRITE

L

16
Threads

eGm| eveldb-sync
el=NVMKV
Raw Device

OpenNVM, Standards, and Consortiums

opennvm.github.io
Primitives API specifications, sample code
Linux swap kernel patch and benchmarking tools
key-value interface API library, sample code, benchmark tools

INCITS SCSI (T10) active standards proposals:

SBC-4 SPC-5 Atomic-Write
http://www.t10.org/cqgi-bin/ac.pl?t=d&f=11-229r6.pdf

SBC-4 SPC-5 Scattered writes, optionally atomic
http://www.t10.0rg/cqgi-bin/ac.pl?t=d&f=12-086r3.pdf

SBC-4 SPC-5 Gathered reads, optionally atomic
http://www.t10.0rg/cgi-bin/ac.pl?t=d&f=12-087r3.pdf

SNIA NVM-Programming TWG draft guide:

http://snia.org/forums/sssi/nvmp

FUSION-IO

http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=11-229r6.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-086r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://www.t10.org/cgi-bin/ac.pl?t=d&f=12-087r3.pdf
http://snia.org/forums/sssi/nvmp
http://snia.org/forums/sssi/nvmp
http://snia.org/forums/sssi/nvmp

w Apps Using OpenNVM technology FUSION-iO

4

MariaDB @

Learn More » Learn More »

PERCONA

SERVER

uuuuuuuuuuuuu

Join us at opennvm.github.io FusioN-io

Current OpenNVM Repositories

2y

Flash-aware Linux swap Key-value interface to flash Flash programming primitives
When working set size exceeds the capacity of DRAM, Create NoSaL databases faster. Automate garbage Use built-in characteristics of the Flash Translation Layer
demand page from a flash-aware virtual memory collection of expired data. to perfrom journal-less updates (more performance and

subsystem. less flash wear = lower TCO)
Repository Learn More

GG Learn More EESI I Learn More

August 15, 2013 19

THANK YOU

fusionio.com | REDEFINE WHAT’S POSSIBLE

	Creating Flash-Aware Applications
	NVM (Flash, other) is different from Disk
	I/O and Memory Access for Flash Aware Applications
	Slide Number 4
	3 Contributions to the Community
	1st Contribution: Flash Primitives
	Flash Primitives: Sample Uses and Benefits
	Atomic Writes – MySQL Example
	MySQL Example: Latency Improvement
	MySQL Example: Throughput Improvement
	2nd Contribution: Linux Fast-Swap
	Improving Linux Swap (Demand-paging)
	Fast Swap - Performance
	3rd Contribution: Key-Value Interface
	Key-Value Interface: Sample Uses and Benefits
	Key-Value Interface - Performance
	OpenNVM, Standards, and Consortiums
	Apps Using OpenNVM technology
	Join us at opennvm.github.io
	Slide Number 20

