
1

Storage over PCIe® Design and
Validation Techniques

Isaac Livny
Field Applications Engineer

Teledyne LeCroy Corporation

Agenda

 Layered Protocol Stack convergence
 Storage over PCI Express® architectural

description
 Command queue generation example
 Emulating an SSD controller
 Emulating an SSD host
 Command Validation

2

Raw Data Stream

Data Link Layer

Physical layer

Transaction Layer

PCIe® Layered Protocol Stack

Data Link Layer

Physical layer

Transaction Layer

Stack

3

SAS Layered Protocol Stack

4

Layered Protocols
Support in Analysis Tools

 Hierarchical view display capability with multi
layer expansion into sub-layers

 Multi-view capabilities
 Processing capability of upper layer through

scripting to adopt to specification changes
 Tooltip feature to highlight specification details
 Performance and statistical analysis per

instruction, by segment and overall trace
 Compacting of repetitive traffic
 Compacting of multiple 32 bit transactions into

64 bit upper layer commands

5

PCIe Hierarchical View
Split Transaction

6

SAS Hierarchical View
SCSI Command Decode

7

USB Hierarchical View
SCSI Command Decode

8

Agenda

 High speed protocol convergence
 Storage over PCI Express architectural

description
 Command queue generation example
 Emulating an SSD controller
 Emulating an SSD host
 Command Validation

9

NVM Express

10

NVM Express

 The NVMHCI Workgroup
released the NVM Express
1.0 specification on March 1,
2011 and is available at
www.nvmexpress.org

 NVMe is a standardized high
performance queuing
interface and command set
optimized for PCIe SSDs

 NVMe is scalable from client
to enterprise applications

NVM Express

Link

Transaction

Physical

Logical

Electrical

11

http://www.nvmexpress.org/

NVM Express 1.0c Decodes

Admin Submission/completion Queue Size

Admin Submission Queue Base Address

Tool Tips make it easy to understand
 each register item in a field

12

Submission and
Completion Queues

Submission Queue
 Head Pointer

Submission
Queue Tail

Completion Queue
 Head Pointer

Submission
Queue

Completion
 Queue

Tail

Head

Head

Tail

Host Memory

13

Circular Queuing Interface

Host

Submission Queue
Tail Doorbell

.

Queue Process
Completion

Completion Queue
Head Doorbell

NVMe Controller

Tail

Head

Head

Tail

Host Memory Submission
Queue Completion

Queue

Ring Doorbell
New Head

Process
Completion

Queue
Command

Ring Doorbell
New Tail

PCIe TLP
PCIe TLP

. .

PCIe TLP
PCIe TLP
PCIe TLP

. . .

PCIe TLP

Fetch
Command

Process
Command

Queue
Completion

Generate
Interrupt

1

2

3 4 5 6

7

8

PCIe TLP

PCIe TLP
PCIe TLP

PCIe TLP
PCIe TLP

14

PRP

Viewing the NVM Express 1.0c
Initialization Phase

Physical Region Page pointer

Courtesy SanDIsk 2012

Capabilities sent to Host memory

Set submission and completion
queues base addresses

15

Command Completion

Controller capabilities

Viewing the NVM Express 1.0c

Command Completion

Courtesy SanDIsk 2012

Namespace capabilities

Identify Namespace Capabilities command

16

Viewing the NVM Express 1.0c

Physical Region Page pointer

Data

Command Completion

Courtesy SanDIsk 2012

Data Transfer

Courtesy SanDIsk 2012

17

Create IO Submission Queue

Creating an I/O queue and Read command example

 Viewing the NVM Express 1.0c
 NVMe Multiple Pointer Based Transactions

Data

PRP List of pointers to
memory addresses

Physical Region Page(PRP)

18

PCIe Architecture Queuing
Interface (PQI)

19

PCIe Architecture Queuing
Interface (PQI)

 T10 has developed this standard.
 Defines the transport methods for

exchanging information between
SCSI devices using a PCI
Express interconnect

 Defines a queuing layer,
potentially used by SOP

 Alternative to NVM Express
 Target and Initiator Support
 Targeting PCIe 3.0

PQI

Link

Transaction

Physical

Logical

Electrical

20

SCSI Over PCI Express(SOP/SOX)

 Developed by T10 Committee
 Compliance with SCSI

Architectural Model
 Proposed support for SOP

target ports interfacing to flash
devices, RAID controllers, and
other SCSI peripheral device
types

 Targeting PCIe 3.0

PQI or NVM Express

Link

Transaction

Physical

Logical

Electrical

SCSI Over PCIe

Preliminary
Protocol Stack

21

SCSI Express SOP/PQI IQ(Inbound
Queue)

n-1
0

1

IQ

First element in
the array

Last element in
the array

Local
Copy of

IQ Pl

Working
Copy of

IQ Pl IQ CI

PQI Host

IQ PI Local
Copy of

IQ Cl

Working
Copy of

IQ Cl
PQI Device

Inbound
IUs

Elements are written to the element array by a
producer and read from the element array by a
consumer

PCIe Link

22

PQI Device

SCSI Express SOP/PQI
OQ(Outbound Queue)

0
1

OQ

First element in
the array

Last element in
the array

Local
Copy of
OQ Pl

Working
Copy of
OQ Pl

OQ CI

PQI Host

OQ PI
Local

Copy of
OQ Cl

Working
Copy of
OQ Cl

PQI Device

Outbound
IUs

Elements are written to the element
array by a producer and read from the
element array by a consumer

PCI Express Link

23

Creating Administrative
and Operational Queues

0
1

IQ n-1

0
1

OQ n-1

0
1

IQ n-1

0
1

OQ n-1

Response

Admin Queue Operational Queue

24

Creating an Operational Inbound Queue

Response

Creating an Operational Outbound Queue

SCSI Express Initialization

Creating Administrative IQ and OQ Queues

Creating Operational OQ Queue

25

SCSI Express
SOP Transfer Packet

Advancing Producer in Inbound Queue

Advancing Consumer in Inbound Queue

Advancing Consumer in Outbound Queue

Advancing Producer in Outbound Queue

Courtesy SanDIsk 2012

26

27

SATA Express

SATA Express

 The Serial ATA International
Organization (SATA-IO) developed
the specification

 This protocol combines the SATA

AHCI software specification with the
PCIe host interface

 SATA Express enables new devices
to be developed that utilize the faster
PCIe interface and maintain
compatibility with a broad base of
existing SATA applications

 Data Rate Support
• PCIe 2.x at x2 link for 8GT/s data rate
• PCIe 3.0 at x2 link for a 16GT/s data rate

SATA

Link

Transaction

Physical

Logical

Electrical

28

AHCI HBA Registers

AHCI PCIe
Configuration

Space Registers

HBA Memory

Registers

1. Port Control

2. Generic Host
Control(GHC)

CAP: Host Capabilities
GHC: Global Host Control
IS: Interrupt Status
PI: Ports Implemented

29

SATA Express
Port Control Setup

Port control address of Command list setup

Port control address of Received FIS setup

30

AHCI System Memory

Command 0
Command 1
Command 2

Command 31

Received
FIS
Structure

Command List
Structure

PxCLB: Cmd List Base Address

PxCLBU: CLB Addr Up32b

PxFB: FIS Base Addr

PxFBU: FIS Base Addr Up32b

Data payload is sent and received through
the PRDT (Physical Region Descriptor
Table) in Command List

Each Port CTL Register points to two
sections of System Memory

Host
System
Memory

Port 0-31 Control
Registers Port 0

31

Command
Table

Address

Physical Region Descriptor(PRD) Table Address

Agenda

 Layered Protocol Stack convergence
 Storage over PCI Express architectural

description
 Command queue generation example
 Emulating an SSD controller
 Emulating an SSD host
 Command Validation

32

NVMe Device script
Submission Queue Setup

 The host creates a command for execution
within the appropriate Submission Queue

 Admin submission queue base register
 0x7F55A000 is written to controller register,

later used by controller to fetch the read
command from host memory

NVM 0
Wait=TLP {
 TLPType=MWr32
 Length = 1 }
#NVM 1
Wait=TLP {
 TLPType=MWr32
 Length = 2 }

 33

NVMe Device script
Command fetch

packet = TLP {
 TLPType = MRd64
 Length = 0x10
 RequesterId = (8:0:0)
 Tag = 0x0
 LastDwBe = 0xF
 FirstDwBe = 0xF
 AddressHi = (FROM_MEM32_A, 0x28)
 # 0x1
 AddressLo = (FROM_MEM32_A, 0x2C)
 # 0xEF224000 }

 The controller fetches the
command(s) in the Submission
Queue from host memory

 The Admin submission queue
base address register

 0x7F55A000is read from
implemented memory resource
through field substitution

34

Agenda

 High speed protocol convergence
 Storage over PCI Express architectural

description
 Command queue generation example
 Emulating an SSD controller
 Emulating an SSD host
 Command Validation

35

Testing NVM Express

 NVMe Registers emulation
• Setup Admin Queue
• Doorbell Registers

 Admin Commands
• Delete I/O Submission Queue
• Create I/O Submission Queue
• Delete I/O Completion Queue
• Create I/O Completion Queue
• Get Log Page
• Identify
• Abort
• Set Features
• Get Features
• Format NVM
• Extensible for Vendor Specific Commands

Summit Z3-16 Protocol Exerciser

36

Pre-Silicon Device Emulation

RTL Design Phase
Denali, Synopsys

RTL Test Vectors

SimPass

CATC Trace

Z3 Exerciser
Generation Script

PE Tracer
Export to
Generation
file

37

Loading Config Space and
Implementing Memory Space

38

SSD Drive Emulation

39

Setting up Controller Registers

40

Submission
queue size

Submission
queue BAR

Completion
queue BAR

Enable
doorbell
execution

Submission
queue
tail doorbell

Identify Command Execution

41

Identify Command Execution

42

Register Address Data

ASQB 0x28 3D61B000

NVMe Controller registers System Memory command

Address Data

0x3D61B000 0x3D2DA160

Address Data

0x3D61B000 3D2DA160

NVMe Device memory space
Address Data
0x3D2DA160

0x70157015

System Memory Data

Emulated NVMe Device
Shown in Device Manager

43

Emulated Drive Shown
in Disk Management

44

Agenda

 High speed protocol convergence
 Storage over PCI Express architectural

description
 Command queue generation example
 Emulating an SSD controller
 Emulating an SSD host
 Command Validation

 45

Testing NVM Express

 NVM Commands
 Write
 Read
 Compare
 Extensible for Vendor

Specific Commands
 Queue Management
 Come up in Device

Manager
 Extensible Vendor

Specific Features (for
Get/Set Features)

 Complete commands via
fused Commands (i.e.
Compare & Write)

46

Initialization example

; This script performs basic initialization of an
NVMe device
; Set up BARs;
; Enable bus master, memory space,
set interrupt disable;
; Set Max payload and read request in Device
Control;
; Write MSI-X table and enable MSI-X.

include="nvme_definitions.peg“
packet="Temp_ConfigWrite0"
{
 Register = 0x10
 Payload = (BAR0_ADDRESS_FLIPPED)
}
wait=TLP { TLPType = Cpl }
packet="Temp_ConfigWrite0"
{
 Register = 0x14
 Payload = (0)
}
wait=TLP { TLPType = Cpl }

47

; This script performs NVM specific
initialization by writing Controller registers on
the device

include="nvme_definitions.peg“
; Set ACQS and ASQS in AQA – Admin Queue
Attributes register
packet="Temp_OneDwordWrite"
{
Address = (CONTROLLER_REGISTERS_BASE +
0x24)
 Payload = (7F007F00)
}
; Set Admin submission Queue address base ASQB
high and low . This address corresponds to the base
address set for Mem_64 Host region in the
generation options file "host_go.gen"

; ASQ – Admin Submission Queue Base Address
low
packet="Temp_OneDwordWrite"
{
Address =
(CONTROLLER_REGISTERS_BASE + 0x28)
 Payload = (0080AA2F) }

Agenda

 Layered Protocol Stack convergence
 Storage over PCI Express architectural

description
 Command queue generation example
 Emulating an SSD controller
 Emulating an SSD host
 Command Validation

48

Exerciser Features for
Storage over PCIe validation

 Read completion payload storage for later processing
to implement command queuing

 Branch upon write payload and procedure activation
to implement doorbell registers

 DMA descriptor implementation and the use of
descriptor data through field substitution

 Creation of data structures in emulator memory
 Trace export to generation file with different timing

options
 Extraction of configuration file from trace and import

to device emulator

49

Command Validation-
NVMe - Generation script

include="nvme_start.peg"
; Pre-program command in the Host Memory Region. This is the Mem_64 Host region
; defined in the generation options file "nvme_host_gen_options.gen"
; Command data is copied from the trace taken a the last call
AddressSpace=Write
{
 Location=Mem64
 Offset = 0
 Size = 128
 LoadFrom =
 (0x06 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x90 0xB1 0x25 0x3F 0x08 0x00 0x00 0x00
 0x00 0xC0 0x25 0x3F 0x08 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

 0x06 0x00 0x01 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xE0 0x47 0x3E 0x02 0x00 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00)
} # Identify Controller and Identify Namespace

50

Command Validation-
NVMe - Generation script

; Write Admin Submission queueTail Doorbell Register
packet="Temp_OneDwordWrite"
{
 Address = (CONTROLLER_REGISTERS_BASE + 0x1000)
 Payload = (01000000)
}
; Wait for the Controller to process the command. This will include writing the Identify data,
; writing the Admin completion Queue, and sending the MSI-X interrupt at vector
wait=TLP
{
 TLPType = MWr32
 Address = ADMIN_INT_VECTOR_ADDRESS
}
; Write Admin Completion Queue Head Doorbell Register
packet="Temp_OneDwordWrite"
{
 Address = (CONTROLLER_REGISTERS_BASE + 0x1004)
 Payload = (01000000)
}

51

Command Validation-
NVMe - Verification script

Constant definitions

Test stage definitions, should be sequential
const STAGE_NVME_CONFIG = 0;
const STAGE_ADMIN_DORBELL_1 = 1;
const STAGE_READ_CMD_1 = 2;
const STAGE_TRANSFER_DATA_1 = 3;
const STAGE_WRITE_CPL_1 = 4;
const STAGE_SEND_INTERRUPT_1 = 5;
const STAGE_ADMIN_DORBELL_2 = 6;
const STAGE_READ_CMD_2 = 7;
const STAGE_TRANSFER_DATA_2 = 8;
const STAGE_WRITE_CPL_2 = 9;
const STAGE_SEND_INTERRUPT_2 = 10;

52

Variable declarations

set Admin_SQB_Low = 0;
set Admin_SQB_High = 0;
set Admin_CQB_Low = 0;
set Admin_CQB_High = 0;
set PRP1_High = 0;
set PRP1_Low = 0;
set PRP2_High = 0;
set PRP2_Low = 0;
set Cmd_Dw10 = 0;
set CurrentIdentifyXferredLength = 0;
set TestStage = 0;
set CurrentChannel = 0;

Command Validation-
NVMe - Verification script

Function: OnStartScript()
Description: The application calls this function at the beginning of the script execution.
OnStartScript()
{ ReportText("Verifying Identify Command...");
 SendAllChannels();
 SendLevelOnly(_LINK);
 SendTraceEvent(_LINK_CONFIG);
 SendTraceEvent(_LINK_COMPLETION);
 SendTraceEvent(_LINK_MEMORY);
 Admin_SQB_Low = 0; # initialize variables
 Admin_SQB_High = 0;
 Admin_CQB_Low = 0;
 Admin_CQB_High = 0;
 PRP1_High = 0;
 PRP1_Low = 0;
 PRP2_High = 0;
 PRP2_Low = 0;
 Cmd_Dw10 = 0;
 CurrentIdentifyXferredLength = 0;
 TestStage = STAGE_NVME_CONFIG;} 53

Command Validation-
NVMe- Verification script

Function: ProcessEvent()
Description: Entry point of the script.
The application calls this function every time it finds the relevant trace event.
ProcessEvent()
{
 CurrentChannel = in.Channel;
 event_type = in.TraceEvent;
 # transaction status checking
 if(in.TransactionStatus == LINK_TRA_STATUS_INCOMPLETE)
 {
 FailTest("Transaction wasn't complete at the Link Layer");
 return null;
 }
 select
 {
 event_type == _LINK_CONFIG : ProcessCfgRequest();
 event_type == _LINK_COMPLETION : ProcessCompletion();
 event_type == _LINK_MEMORY : ProcessMemReadOrWrite();
 };
 return Complete();
}

54

NVMe Command Validation
Resulting Trace

55

Conclusion

 Storage devices have adopted the serial
protocol host interface

 SSDs are becoming an integral part of the
Enterprise infrastructure

 SSDs are moving towards a PCIe host
interface

 NVM Express, SCSI Express, and SATA
Express are new compelling implementations
for the SSD host interface

 PCI Express based SSD implementations
leverage off PCI Express Analysis expertise
 56

	Storage over PCIe® Design and Validation Techniques
	Agenda
	PCIe® Layered Protocol Stack
	Slide Number 4
	Layered Protocols �Support in Analysis Tools
	PCIe Hierarchical View�Split Transaction
	SAS Hierarchical View�SCSI Command Decode
	USB Hierarchical View�SCSI Command Decode
	Agenda
	NVM Express
	NVM Express
	NVM Express 1.0c Decodes
	Submission and �Completion Queues
	Circular Queuing Interface
	Viewing the NVM Express 1.0c Initialization Phase
	Viewing the NVM Express 1.0c
	Viewing the NVM Express 1.0c
	 Viewing the NVM Express 1.0c� NVMe Multiple Pointer Based Transactions
	PCIe Architecture Queuing Interface (PQI)
	PCIe Architecture Queuing Interface (PQI)
	SCSI Over PCI Express(SOP/SOX)
	SCSI Express SOP/PQI IQ(Inbound Queue)
	SCSI Express SOP/PQI �OQ(Outbound Queue)
	Creating Administrative �and Operational Queues
	SCSI Express Initialization
	SCSI Express �SOP Transfer Packet
	SATA Express
	SATA Express
	AHCI HBA Registers
	SATA Express �Port Control Setup
	AHCI System Memory
	Agenda
	NVMe Device script�Submission Queue Setup
	NVMe Device script�Command fetch
	Agenda
	Testing NVM Express
	Pre-Silicon Device Emulation
	Loading Config Space and Implementing Memory Space
	SSD Drive Emulation
	Setting up Controller Registers
	Identify Command Execution
	Identify Command Execution
	Emulated NVMe Device�Shown in Device Manager
	Emulated Drive Shown�in Disk Management
	Agenda
	Testing NVM Express
	Initialization example
	Agenda
	Exerciser Features for �Storage over PCIe validation
	Command Validation- �NVMe - Generation script
	Command Validation- �NVMe - Generation script
	Command Validation- �NVMe - Verification script
	Command Validation- �NVMe - Verification script
	Command Validation- �NVMe- Verification script
	NVMe Command Validation Resulting Trace
	Conclusion

