Making Error Correcting Codes Work for Flash
Memory
Part I: Primer on ECC, basics of BCH and LDPC codes

Lara Dolecek

Laboratory for Robust Information Systems (LORIS)
Center on Development of Emerging Storage Systems (CoDESS)
Department of Electrical Engineering, UCLA

L R S Flash Memory Summit 2014, Santa Clara, CA

1/58

Preliminaries

ECC is a must for Flash!

100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000

10,000

0
SLC 5%-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC
Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

P/E Cycle Endurance

L R S Flash Memory Summit 2014, Santa Clara, CA 2 /58

Preliminaries

ECC is a must for Flash!

Lifetime
100,000

90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000

10,000

0
SLC 5%x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC
Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

P/E Cycle Endurance

L R S Flash Memory Summit 2014, Santa Clara, CA 2 /58

Preliminaries

ECC is a must for Flash!

ECC needs

Lifetime

100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000

10,000
0 - || — —_—
SLC 5x-nm MLC 3x-nm MLC 2x-nm MLC 3-bit-MLC
Ariel Maislos, “A New Era in Embedded Flash Memory”, Flash Summit 2011 (Anobit)

P/E Cycle Endurance

L R S Flash Memory Summit 2014, Santa Clara, CA 2 /58

Preliminaries

What is this tutorial about

Today we will

(]

Learn the basics of ECC operations

@ Learn about fundamental coding approaches (BCH, LDPC)
@ Learn about the system-level perspective on ECC
°

Learn about recent advanced coding-oriented approaches to
Flash

L R S Flash Memory Summit 2014, Santa Clara, CA 3 /58

Preliminaries

A simple example

CHANNEL
TXd (STORAGE) RX'd
99%
1 1
1%
1%
0 0

@ Errors in Flash are modeled as transmission a noisy
communication channel

@ The simplest example is binary symmetric channel (BSC).

L R S Flash Memory Summit 2014, Santa Clara, CA 4 /58

Preliminaries

A simple example

CHANNEL
T>d (STORAGE) RXd
99%
—_—
1 1
1%
1%
0 —F > 0
99%

@ Errors in Flash are modeled as transmission a noisy
communication channel
@ The simplest example is binary symmetric channel (BSC).

@ This example:
@ Raw bit error rate (RBER) is 0.01.
@ Undetected bit error rate (UBER) is 0.01

L R S Flash Memory Summit 2014, Santa Clara, CA 4 /58

Preliminaries

CHANNEL
TX'd (STORAGE) RX'd

99%
1%
1%

0 — 5> 0
99%

@ Suppose we now use repetition coding
0 — 000,1 — 111

L R S Flash Memory Summit 2014, Santa Clara, CA 5 /58

Preliminaries

CHANNEL

TX'd (STORAGE) RX'd
99%

1 _— 1
1%
1%

0o — _ 50
99%

@ Suppose we now use repetition coding

0 — 000,1 — 111

@ Decoding rule:
e Receive {000,001,010,100} — Decide 0 was sent
o Receive {111,110,101,011} — Decide 1 was sent

LOR'S

Flash Memory Summit 2014, Santa Clara, CA 5 /58

Preliminaries

CHANNEL
TX'd (STORAGE) RX'd

@ Suppose we now use repetition coding
0 — 000,1 — 111

@ Decoding rule:
e Receive {000,001,010,100} — Decide 0 was sent
o Receive {111,110,101,011} — Decide 1 was sent
@ RBER is still 0.01...What is UBER?

L R S Flash Memory Summit 2014, Santa Clara, CA 5 /58

Preliminaries

LOR'S

CHANNEL
TX'd (STORAGE) RX'd

Suppose we now use repetition coding
0 —000,1 — 111

Decoding rule:
e Receive {000,001,010,100} — Decide 0 was sent
o Receive {111,110,101,011} — Decide 1 was sent
RBER s still 0.01...What is UBER?
UBER is 0.013 + 3 x 0.01%2 x 0.99 = 0.000298

Flash Memory Summit 2014, Santa Clara, CA 5 /58

Preliminaries

LOR'S

CHANNEL
TX'd (STORAGE) RX'd

Suppose we now use repetition coding
0 —000,1 — 111

Decoding rule:
e Receive {000,001,010,100} — Decide 0 was sent
o Receive {111,110,101,011} — Decide 1 was sent
@ RBER is still 0.01...What is UBER?
e UBER is 0.013 + 3 x 0.01%2 x 0.99 = 0.000298
@ This is now 33 times better!...
Flash Memory Summit 2014, Santa Clara, CA 5 /58

Preliminaries

LOR'S

CHANNEL
TX'd (STORAGE) RX'd

Suppose we now use repetition coding
0 —000,1 — 111

Decoding rule:
e Receive {000,001,010,100} — Decide 0 was sent
o Receive {111,110,101,011} — Decide 1 was sent
@ RBER is still 0.01...What is UBER?
e UBER is 0.013 + 3 x 0.01%2 x 0.99 = 0.000298
@ This is now 33 times better!...Any downsides?
Flash Memory Summit 2014, Santa Clara, CA 5 /58

Preliminaries

Concepts of interest

input message codeword retrieved word decoded message
Noisy Channel | Decoder |-
k bits n bits n bits k bits

@ A channel code C maps a message m of length k into a
codeword ¢ of length n, with n > k (encoder).

e Total number of codewords: 2.
e Code rate: R = k/n.

@ Structure of C is used to determine the stored message
(decoder).

LORTS

Flash Memory Summit 2014, Santa Clara, CA 6 /58

Preliminaries

Repetition code example

input message codeword
0 000
1 111

Message length k =1

Total number of codewords 21 = 2.
Codeword length n = 3.

Code rate R =1/3.

L R S Flash Memory Summit 2014, Santa Clara, CA 7 /58

Preliminaries

Concepts of interest -ctd.

Linear block code C of dimension k and codeword length n can be
represented by

@ a k x n generator matrix G
@ a (n— k) x n parity check matrix H

@ G specifies the range space of C and H specifies the null
space of C.

@ The two representations are mathematically equivalent.

L R S Flash Memory Summit 2014, Santa Clara, CA 8 /58

Preliminaries

Concepts of interest -ctd.

Linear block code C of dimension k and codeword length n can be
represented by

@ a k X n generator matrix G

@ a (n— k) x n parity check matrix H

@ G specifies the range space of C and H specifies the null
space of C.

@ The two representations are mathematically equivalent.

L R S Flash Memory Summit 2014, Santa Clara, CA 8 /58

Preliminaries

Concepts of interest -ctd.

Linear block code C of dimension k and codeword length n can be
represented by

@ a k X n generator matrix G

@ a (n— k) x n parity check matrix H cHT =0

@ G specifies the range space of C and H specifies the null
space of C.

@ The two representations are mathematically equivalent.

L R S Flash Memory Summit 2014, Santa Clara, CA 8 /58

Preliminaries

Repetition code example

input message codeword

0 000
1 111
@ Generator matrix
G=[11 1]
@ Parity check matrix
1 10
H= [1 01]

LORTS

Flash Memory Summit 2014, Santa Clara, CA 9 /58

Preliminaries

How many errors can you correct ?

@ Our toy repetition code corrects 1 error.

L R S Flash Memory Summit 2014, Santa Clara, CA 10 / 58

Preliminaries

How many errors can you correct ?

@ Our toy repetition code corrects 1 error.

In general, | k +d < n+ 1|, where
@ k is the message length, n is the codeword length

@ d is the minimum separation between codewords a.k.a.
minimum code distance

e Code can correct ‘ t=1[(d—-1)/2] ‘ errors.

L R S Flash Memory Summit 2014, Santa Clara, CA 10 / 58

Preliminaries

Computing UBER

For a code with message length k and codeword length n.

Exact:

S ei1 (7) X RBER x(1—RBER)"~J
UBER = ==Ly T

Good approximation for small error values:

) x RBER'**1x (1—RBER)"~t~1
k

UBER — (til

@ Here, (") is the binomial coefficient -1
J J(n—j)!

L R S Flash Memory Summit 2014, Santa Clara, CA 11 / 58

Preliminaries

Concepts of interest

Linear block codes can be divided in two categories:

@ algebraic codes (BCH codes, Hamming codes, Reed-Solomon
codes)

e graph-based codes (LDPC codes, Turbo codes)
A good practical channel code should

@ be able to correct as many transmission errors as possible with
the least overhead

@ be equipped with a simple decoding algorithm

L R S Flash Memory Summit 2014, Santa Clara, CA 12 / 58

Algebraic codes Algebra review

BCH codes

Algebraic Codes

L R S Flash Memory Summit 2014, Santa Clara, CA 13 / 58

Algebraic codes Algebra review
BCH codes

Brief review of finite fields

Suppose q is prime.
e GF(q) can be viewed as the set {0,1,...,q9 — 1}.
@ Operations are performed modulo g.

Example:

@ GF(5) has elements {0,1,2,3,4} such that

product |0 1 2 3 4 sum [0 1 2 3 4
0 0 0 0 0O 0 |01 2 3 4
1 01 2 3 4 1 11 2 3 40
2 0 2 4 1 3 2 12 3 4 0 1
3 0 3 1 4 2 3 13 4 0 1 2
4 0 4 3 2 1 4 |4 0 1 2 3

L R S Flash Memory Summit 2014, Santa Clara, CA 14 / 58

Algebraic codes Algebra review
BCH codes

Brief review of finite fields

@ GF(q) can also be expressed as
{a=° =0,a°=1,a,0?,...,a972}, for suitably chosen a.

Example:

e In GF(S):O—>of°°,1—>040,2—>04,3’>—>0z3and4—>042

o Consider an element « of GF(q) such that o # 0 and o # 1.

@ Let s be the smallest positive integer such that o® = 1. Then,
s is the order of a.

o If s=q—1, then « is called a primitive element of GF(q).

’ GF(q) is thus generated by powers of a primitive element «. ‘

L R S Flash Memory Summit 2014, Santa Clara, CA 15 / 58

Algebraic codes Algebra review
BCH codes

Brief review of finite fields

e We are often interested in the extension field GF(g¢™) of
GF(q), where g is prime and m is a positive integer.

e GF(g™)isthen {a=>° =0,a° =1,a,a?,...,a9 1}, where
a denotes a primitive element of GF(q™) and is a root of
so-called primitive polynomial.

Example:

o GF(8) = GF(23).

@ Here, « is a root of the polynomial x3 4+ x + 1.

o We then have

al B o = a2+a

o = « a® = a?+4+a+1
a? = a? 6 2

3 « = a+1

o> = a+1 o 0

L R S Flash Memory Summit 2014, Santa Clara, CA 16 / 58

Algebraic codes Algebra review
BCH codes

BCH code construction

BCH code C is a linear, cyclic code described by a (d — 1) x n
parity check matrix H with elements from GF(g™) with « having

order n:
1 ab o2b L. Oz(nfl)b
; 1 obtl Q2(b+1) o o (n=1)(b+1)
1 gbtd—2 g2b+d-2) .. (n-1)(b+d-2)

@ b is any (positive) integer and d is integer 2 < d < n.
@ Minimum distance of C is at least d. The code corrects at

least t = L%j errors.

L R S Flash Memory Summit 2014, Santa Clara, CA 17 / 58

Algebraic codes Algebra review
BCH codes

BCH code construction

o If o is a primitive element, then the blocklength is n = g™ — 1
(largest possible).

e If b=1, BCH code is called narrow-sense (simplifies some
encoding and decoding operations).

@ For m =1, BCH codes are also known as Reed-Solomon
codes.

L R S Flash Memory Summit 2014, Santa Clara, CA 18 / 58

Algebraic codes Algebra review
BCH codes

BCH code properties

@ A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.
Example:
@ Suppose (0, ,0,1,1) <3 x>+ x + 1 is a codeword in C. Then
so are (1,0,1,1,0), (0,1,1,0,1), (1,1,0,1,0) and
(1,0,1,0, 1).

L R S Flash Memory Summit 2014, Santa Clara, CA 19 / 58

Algebraic codes Algebra review
BCH codes

BCH code properties

@ A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.

Example:
1,1) <+ x3 + x + 1 is a codeword in C. Then

e Suppose (0,1,0,1,
1,0), (0,1,1,0,1), (1,1,0,1,0) and

so are (1,0,1,1,
(1,0,1,0,1).

e Cyclic code is generated by a generator polynomial g(x), such
that each codeword ¢ corresponds to a polynomial

pc(x) = m(x)g(x). All rows of the generator matrix G are
cyclic shifts of g(x).

L R S Flash Memory Summit 2014, Santa Clara, CA 19 / 58

Algebraic codes Algebra review
BCH codes

BCH code properties

@ A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.

Example:
@ Suppose (0,1,0,1,1) <+ x3 + x + 1 is a codeword in C. Then
so are (1,0,1,1,0), (0,1,1,0,1), (1,1,0,1,0) and
(1,0,1,0,1).

e Cyclic code is generated by a generator polynomial g(x), such
that each codeword c corresponds to a polynomial
pc(x) = m(x)g(x). All rows of the generator matrix G are
cyclic shifts of g(x).

@ BCH code: Each codeword c¢ corresponds to a polynomial
pc(x) = m(x)g(x) where g(x) is LCM of
(X _ ab)(x _ ab—i—l) .. (X _ ab+d—2).

L R S Flash Memory Summit 2014, Santa Clara, CA 19 / 58

Algebraic codes Algebra review
BCH codes

BCH code example

@ Let's construct a narrow-sense BCH code over GF(8)
correcting t = 1 error and of length n =7.

@ We consider a primitive element « that satisfies
a®+ a+1=0. Notice that o’ = 1.

@ Then,

L R S Flash Memory Summit 2014, Santa Clara, CA 20 / 58

Algebraic codes Algebra review
BCH codes

BCH code example

@ Let's construct a narrow-sense BCH code over GF(8)
correcting t = 1 error and of length n=7.

@ We consider a primitive element « that satisfies
o® +a+1=0. Notice that o/ = 1.

@ Then,

L R S Flash Memory Summit 2014, Santa Clara, CA 20 / 58

Algebraic codes Algebra review
BCH codes

BCH code example

We can interpret this code in the binary domain by substituting

1 0 0 1
1= 1|0 a— |1 =10 S |
0 0 1 0
0 1 1 0
at 1 a® = |1 =10 0> 1|0
1 1 1 0

L R S Flash Memory Summit 2014, Santa Clara, CA 21 /58

Algebraic codes Algebra review
BCH codes

BCH code example

We can then interpret this parity check matrix in the binary

domain as))
1001011
0101110
H— 0010111
1001011
0010111

101 1 100 1]

Here H is 6 x 7 and has rank 3. This code can correct 1 error.

L R S Flash Memory Summit 2014, Santa Clara, CA 22 / 58

Algebraic codes Algebra review
BCH codes

Decoding BCH codes

Decoding algorithm heavily relies on the algebraic structure of the
code: recall that each codeword polynomial ¢(x) must have as
roots o, abt1 . abtd—2

© Compute the syndromes of the received polynomial r(x)- tells
us which of a's are not the roots.

@ Based on the syndromes, compute the locations of the errors
(system of linear equations).

© Compute the error values at these location (system of
non-linear equations that are in the Vandermode form)

© Based on steps 2 and 3, build error polynomial e(x).
© Add e(x) to r(x) to produce the estimate of c(x).

L R S Flash Memory Summit 2014, Santa Clara, CA 23 / 58

Algebraic codes Algebra review
BCH codes

Decoding BCH codes

@ If the system of equations cannot be solved, declare a
decoding failure. This is a hard limit on the number of
correctable errors.

@ Implementation can be greatly reduced using the
shift-registers viewpoint in the Berlekamp-Massey algorithm.

L R S Flash Memory Summit 2014, Santa Clara, CA 24 / 58

Algebraic codes Algebra review
BCH codes

BCH code parameter tradeoffs

For fixed code length and RBER, how does UBER depend on t 7

Code length RBER Strength (t) Code Rate UBER
1023 0.002 12 0.8827 2.8017 x 1010
1023 0.002 13 0.8729 4.0511x 101
1023 0.002 14 0.8631 5.4703 x 1012
1023 0.002 15 0.8534 6.9272 x 1013
1023 0.002 16 0.8436 8.2572x 1014
1023 0.002 17 0.8387 9.2968 x 10°1°
1023 0.002 18 0.8289 9.9314 x 1016

L R S Flash Memory Summit 2014, Santa Clara, CA 25 / 58

Algebraic codes Algebra review
BCH codes

BCH code parameter tradeoffs

For fixed code length and RBER, how does UBER depend on t 7

Code length RBER Strength (t) Code Rate UBER
1023 0.002 1 12 0.8827 1 2.8017 x 1020
1023 0.002 / 13 0.8729 / 4.0511 x 1011
1023 0.002 / 14 0.8631 / 5.4703 x 102
1023 0.002 / 15 0.8534 / 6.9272 x 1013
1023 0.002 / 16 0.8436 / 8.2572 x 1014
1023 0.002 / 17 0.8387/ 9.2968 x 101>
1023 0002 | 18 08285 _ 9.9314x10%

Improve by 6 Improve by >
200,000 times

L R S Flash Memory Summit 2014, Santa Clara, CA 26 / 58

Algebraic codes Algebra review
BCH codes

BCH code parameter tradeoffs

For fixed RBER and t, how does UBER depend on codelength 7

Code length RBER Strength (t) Code Rate UBER

63 0.002 10 0.2857 3.7007 x 107
127 0.002 10 0.5039 7.0119x 10"
255 0.002 10 0.7020 4.4666 x 104
511 0.002 10 0.8239 2.7184 x 1011
1023 0.002 10 0.9022 1.0700 x 108
2047 0.002 10 0.9463 1.7231x10°
4096 0.002 10 0.9707 5.1165 x 10

L R S Flash Memory Summit 2014, Santa Clara, CA 27 / 58

Algebraic codes Algebra review
BCH codes

BCH code parameter tradeoffs

For fixed RBER and t, how does UBER depend on codelength ?

Code length RBER Strength (t) Code Rate UBER

63 & 0.002 10 0.2857 , 3.7007 x 107
127 \ 0.002 10 0.5039 / 7.0119 x 107
255 \ 0.002 10 0.7020 / 4.4666 x 10714
511 \ 0.002 10 0.8239 / 2.7184 x 10
1023 \ 0.002 10 0.9022 / 1.0700 x 10
2047 \ 0.002 10 0.9463/ 1.7231x 10°
4095 & \ 0.002 10 0.970/9 . 5.1165 x 105

Increase by 64 times Decrease by ~

1 000 000 000 000 times

L R s Flash Memory Summit 2014, Santa Clara, CA 28 / 58

Algebraic codes Algebra review
BCH codes

BCH code parameter tradeoffs

For fixed codelength and t, how does UBER depend on RBER 7

Code length RBER Strength (t) Code Rate UBER
1023 0.002 15 0.8534 6.9272 x 1013
1023 0.004 15 0.8534 6.9350 x 10°°
1023 0.006 15 0.8534 7.0667 x 107
1023 0.008 15 0.8534 1.1161 x 10°
1023 0.010 15 0.8534 6.4448 x 10
1023 0.012 15 0.8534 2.0042 x 10
1023 0.014 15 0.8534 4.1505 x 10

L R S Flash Memory Summit 2014, Santa Clara, CA 29 / 58

Algebraic codes Algebra review
BCH codes

BCH code parameter tradeoffs

For fixed codelength and t, how does UBER depend on RBER ?

Code length RBER Strength (t) Code Rate UBER
1023 4 0.002 15 08534 L 6.9272x10%3
1023 / 0.004 15 0.8534 / 6.9350 x 10
1023 / 0.006 15 0.8534 / 7.0667 x 107
1023 | o008 15 08534 /| 11161x10°
1023 / 0.010 15 0.8534 / 6.4448 x 10°
1023 / 0.012 15 0.8534/ 2.0042 x 10"
1023 / . 0.014 15 0.853/1 , 41505 x 10

Increase by Decrease by ~

7 times 1 000 000 000 times

L R S Flash Memory Summit 2014, Santa Clara, CA 30 / 58

Algebraic codes Algebra review

BCH codes

Graph-Based Codes

L R S Flash Memory Summit 2014, Santa Clara, CA 31 /58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Low Density Parity Check (LDPC) Codes

Definition 1: LDPC code
An LDPC block code C is a linear block code whose parity-check
matrix H has a small number of ones in each row and column.

@ Invented by Gallager in 1963 but were all but forgotten until
late 1990's.

@ In the limit of very large block-lengths LDPC codes are known
to approach the Shannon limit (i.e., the highest rate at which
the code can be designed that guarantees reliable
communication)

@ LDPC codes are amenable to low-complexity iterative
decoding.

L R S Flash Memory Summit 2014, Santa Clara, CA 32 /58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

An Example

LDPC code described by the sparse parity check matrix H:

100100100
0100100710
y_|00100100°1
100001010
010100001

(001010100,

Matrix H has 9 columns and 6 rows.

L R S Flash Memory Summit 2014, Santa Clara, CA 33 /58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

An Example

LDPC code described by the sparse parity check matrix H:

100100100
0100100710
y_|00100100°1
100001010
010100001

(001010100,

Matrix H has 9 columns and 6 rows.

There are 9 coded bits and 6 parity-check equations.

Each coded bit participates /=2 parity-check equations and each
parity-check equation contains r = 3 coded bits.

L R S Flash Memory Summit 2014, Santa Clara, CA 33 /58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

LDPC Preliminaries

Definition 3: Tanner graph

A Tanner graph of a code C with a parity check matrix H is the
bipartite graph such that:

@ each coded symbol i is represented by a variable node v;,
@ each parity-check equation j is represented by a check node ¢;,

@ there exists an edge between a variable node and a check
node if and only if H(j,/) = 1.

L R s Flash Memory Summit 2014, Santa Clara, CA 34 / 58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

100 1 0 01 0O
01 0010010
H:OOlOOlOOl
100001010
01 010O0O0TO071
001 0101O00

Parity check c3: v3 + vg + vg = 0 over GF(2).

L R S Flash Memory Summit 2014, Santa Clara, CA 35 /58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

100100100 VI V2 Vs Ve Vs Ve Vv Ve Vg
010010010
y_loo0o100 10001
100001010
010100001
001010100

Vi Vo V3 V4 V5 Vg V7 Vg Vg

Parity check c3: v3 + vg + vg = 0 over GF(2).

L R S Flash Memory Summit 2014, Santa Clara, CA 35 /58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

An Example

LDPC code: parity check matrix H and its Tanner graph

Vi Vo V3 V4 V5 Vg V7 VB W

100 1 0 01 0O a
01 0010010 &)
H— 001 0O01O0O071 G
100001010 o
01 010O0O0TO071 s
001 0101O00 s

Vi Vo V3 V4 V5 Vg V7 Vg Vg

Parity check c3: v3 + vg + vg = 0 over GF(2).

L R S Flash Memory Summit 2014, Santa Clara, CA 35 /58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

L R S Flash Memory Summit 2014, Santa Clara, CA 36 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

© (bit-to-check) Each variable node sends a message to each
check node it is connected to,

L R S Flash Memory Summit 2014, Santa Clara, CA 36 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

© (bit-to-check) Each variable node sends a message to each
check node it is connected to,

@ (check processing) Each check node then computes the
consistency of incoming messages,

L R S Flash Memory Summit 2014, Santa Clara, CA 36 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

© (bit-to-check) Each variable node sends a message to each
check node it is connected to,

@ (check processing) Each check node then computes the
consistency of incoming messages,

© (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

L R S Flash Memory Summit 2014, Santa Clara, CA 36 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

© (bit-to-check) Each variable node sends a message to each
check node it is connected to,

@ (check processing) Each check node then computes the
consistency of incoming messages,

© (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

© (bit processing) Each variable node (coded symbol) updates
its value.

L R S Flash Memory Summit 2014, Santa Clara, CA 36 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Message Passing Decoding

Passed messages can be either
@ Hard decisions: 0 or 1

@ Soft decisions/likelihoods: real numbers

L R S Flash Memory Summit 2014, Santa Clara, CA 37 /58

An Ex

LORTS

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

ample

input message codeword retrieved word decoded message
-
Encoder Noisy Channel gl Decoder
1 1101 1001 ?
Message m Codeword y Y1 Y2 Y3 Ya
m, Y1Y2YaYa] £ R P
0 — 0000
1 - 1101
O [m] O

YitYotys= 0 yitysty, =0 y+ys+y,=0

Flash Memory Summit 2014, Santa Clara, CA 38 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Message Passing Decoding

Bit-flipping algorithm

L R S Flash Memory Summit 2014, Santa Clara, CA

39 /58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Received Codeword

Y1tYotYs YitYstYs YotYsty,

L R S Flash Memory Summit 2014, Santa Clara, CA 40 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Bit-to-Check Messages

1+y,+y; 1+ysty, YotYaty,

L R S Flash Memory Summit 2014, Santa Clara, CA 41 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Bit-to-Check Messages

1+0+y, 1+ysty, 0+ysty,

L R S Flash Memory Summit 2014, Santa Clara, CA 41 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check Processing

1+0+0=12? 1+0+y, 0+0+y,

L R S Flash Memory Summit 2014, Santa Clara, CA 42 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check Processing

1+0+0=1 7?7 1+0+1=0+ 0+0+1=17?7?

L R S Flash Memory Summit 2014, Santa Clara, CA 42 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check-to-Bit Messages

Flip, Flip, Flip,

1+0+0=1 7?7 1+0+1=0+ 0+0+1=1?7?

L R S Flash Memory Summit 2014, Santa Clara, CA 43 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check-to-Bit Messages

1 0 0 1
Flip, Stay Flip, Flip, Stay, Stay,

1+0+0=1 7?7 1+0+1=0+ 0+0+1=1?7?

L R S Flash Memory Summit 2014, Santa Clara, CA 43 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check-to-Bit Messages

1 0 0 1
Flip, Stay Flip, Flip Flip, Stay, Flip Stay, Flip

1+0+0=1?7? 1+0+1=0+ 0+0+1=1?7?

L R S Flash Memory Summit 2014, Santa Clara, CA 43 / 58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

Bit Processing

1
Flip, Stay

0 1
Flip, Stay, Flip Stay, Flip

1+0+0=1 7?7 1+0+1=0 0+0+1=1"7?7

L R S Flash Memory Summit 2014, Santa Clara, CA 44 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Bit Processing

YitYotYs Y1tYstYa YotYstYa

L R S Flash Memory Summit 2014, Santa Clara, CA 44 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Bit-to-Check Messages

1+y,+y, 1+ys+y, YotYstYa

L R S Flash Memory Summit 2014, Santa Clara, CA 45 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Bit-to-Check Messages

1+1+y, 1+ys+y, 1+ys+y,

L R S Flash Memory Summit 2014, Santa Clara, CA 45 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Bit-to-Check Messages

1+1+0=0+ 1+0+y, 1+0+y,

L R S Flash Memory Summit 2014, Santa Clara, CA 45 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check Processing

1+1+0=0+ 1+0+1=0+ 1+0+1=0+

L R S Flash Memory Summit 2014, Santa Clara, CA 46 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check-to-Bit Messages

Stay, Stay, Stay,

1+1+0=0+ 1+0+1=0+ 140+1=0+

L R S Flash Memory Summit 2014, Santa Clara, CA 47 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check-to-Bit Messages

Stay, Stay, Stay,

1+1+0=0+ 1+0+1=0+ 140+1=0+

L R S Flash Memory Summit 2014, Santa Clara, CA 47 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Check-to-Bit Messages

1 1 0 1
Stay, Stay Stay, Stay Stay, Stay, Stay Stay, Stay

1+1+0=0+ 1+0+1=0+ 1+0+1=0+

L R S Flash Memory Summit 2014, Santa Clara, CA 48 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Bit Processing

Decoded Codeword
1 1 0 1

1+1+0=0+ 1+0+1=0+ 1+0+1=0+

L R S Flash Memory Summit 2014, Santa Clara, CA 49 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Soft Iterative Decoding

Improved variants of message passing algorithm use soft

. . . Bt . . _ P(Xl:0|yl)
information as messages, i.e., log-likelihood ratio L = log Pli=1ly))"
Sum-product algorithm (SPA) [1,2]

Min-sum algorithm (MSA) [3]

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

L R S Flash Memory Summit 2014, Santa Clara, CA 50 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log %.
Sum-product algorithm (SPA) [1,2]
@ bit-to-check L(v; = ¢j) =
> jren(iyg Ll — vi) + L (v;)
o check-to-bit L(¢; = v;) =
O (Zrengp PULY =) Liengy sgn(Lv} =)
where ®(x) = — log(tanh(x/2))
Min-sum algorithm (MSA) [3]
o check-to-bit L(¢c; = v;) =
minyengni IL(v; = ¢) [Liengyi sgn(L(v] — ¢j))

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.
[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

L R S Flash Memory Summit 2014, Santa Clara, CA 50 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Soft Decoding

Bit values 1 1 0 1

L R S Flash Memory Summit 2014, Santa Clara, CA 51 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1

L R S Flash Memory Summit 2014, Santa Clara, CA 51 / 58

Graph-based codes

Soft Decoding

Bit values 1
Values using BPSK -1

Values from channel -1.1

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

1 0
-1 +1
0.1 1.2

L R S Flash Memory Summit 2014, Santa Clara, CA

-0.9

51 /58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 -0.9
Beliefs (Lf,ilm)) 2.2 0.2 2.4 18

—(v:—1)2 2
Jer _ gy (EOTPRY 2
v T\ momraa) T g2

a’TL
We assume g, = 1.

L R S Flash Memory Summit 2014, Santa Clara, CA 51 / 58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 -0.9
Beliefs 2.2 0.2 2.4 1.8

1#i
v

1
Le;y, = 2tanh™" 1_[tanhELvlﬁ,>

L R S Flash Memory Summit 2014, Santa Clara, CA 51 / 58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1
Values from channel -1.1 0.1 1.2 -0.9
Beliefs 2.2 0.2 2.4 1.8

1
Le;y, = 2tanh™" 1_[tanhELvﬁcl

i
v

|

LORTS

Flash Memory Summit 2014, Santa Clara, CA 51 / 58

Graph-based codes

Soft Decoding

Bit values 1
Values using BPSK -1

Values from channel

Beliefs

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

L R S Flash Memory Summit 2014, Santa Clara, CA

51 /58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

Soft Decoding

Bit values 1 1 0 1
Values using BPSK -1 \ -1 \ +1 \ -1 \
Values from channel 11 W) 0 WU 1.2 W\

Beliefs)éf

All variable nodes are decoded to correct bit value.

L R S Flash Memory Summit 2014, Santa Clara, CA 51 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Performance with multi read

Figure: Rate 0.9 LDPC and BCH codes of length n = 9100.
Frame Error Rate vs. Raw Bit Error Rate (MLC Gaussian Model)
10° A : —&— Hard BCH

Hard (3 reads)
Code 1

_ Hard (3 reads)
Code 2

6 reads MMI
Code 1

6 reads MMI
Code 2

1
1
1
1
1
1
1
"
1
1
1| = # = Soft Code 2
1
f
1
i
1
1
1|
1

—— Soft Code 1

Hard (3 reads)
Shannon Limit

Frame Error Rate

-0
6 reads
A Shannon Limit MMI
== Soft Shannon Limit
I i [
0.003 0.004 0.006 0.0080.01 0.015 0.02 0.03 0.06
Channel Bit Error Probability

b it m s o i s

L R S Flash Memory Summit 2014, Santa Clara, CA 52 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Performance with multi read

Figure: Rate 0.9 LDPC and BCH codes of length n = 9100.
Frame Error Rate vs. Raw Bit Error Rate (MLC Gaussian Model)

e —&— Hard BCH

Hard (3 reads)
Code 1

_ Hard (3 reads)
Code 2

6 reads MMI
Code 1

6 reads MMI
Code 2

1
1
1
1
1
1
1
"
1
1
1| = # = Soft Code 2
1
f
1
i
1
1
1|
1

—— Soft Code 1

Hard (3 reads)
Shannon Limit

Frame Error Rate

-o-
6 reads

A Shannon Limit MMI

== Soft Shannon Limit

. 0.003 0.004 0.606 0.6080,61 0.015 0.02 0.63 OA(‘JG
Caution: Channel Bit Error Probability
@ Optimal code design in the error floor region depends on the
chosen quantization.
@ AWGN-optimized LDPC codes may not be the best for the

quantized (and asymmetric) Flash channel !
L Flash Memory Summit 2014, Santa Clara, CA 52 / 58

b it m s o i s

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

Non-binary LDPC codes

Entries in the parity check matrix H are taken from GF(q).
Example: GF(8) =0,1,2,...,7. (with o — k+ 1 for 0 < k < 6)

a Vi Vo V3 V4 V5 Vg V7 Vg g

OO OO
= O O O o O

O WO oN O
SO O WO o
ONNOOOW
~NO O OO o
O O 0ol = OO
oo ~NoOoONOoO
o O OO
o

Vi Vo V3 V4 V5 Vg V7 Vg g

Parity check c3: 3vs + v + vo = 0 over GF(8).

L R S Flash Memory Summit 2014, Santa Clara, CA 53 / 58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

Non-binary LDPC codes

Entries in the parity check matrix H are taken from GF(q).
Example: GF(8) =0,1,2,...,7. (with o — k+ 1 for 0 < k < 6)

a Vi Vo V3 V4 V5 Vg V7 Vg g

OO OOK
~NO O OO o

O WO oN O
SO O WO o
O N O OO W
O O 01— OO
H O OOOoOOuL
OO NONO
o O+ OO
o

Vi Vo V3 V4 V5 Vg V7 Vg g

Parity check c3: 3vs + v + vo = 0 over GF(8).

See talk on Thursday: Flash Controller Design (8:30 — 10:50)

L R S Flash Memory Summit 2014, Santa Clara, CA 53 / 58

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Graph-based codes

Performance evaluation

Figure: Non-binary LDPC codes vs. BCH codes performance comparison
for AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH
code corrects 13 errors.

1

1.0E-2

1.0E-4

FER

1.0E-6

1.0E-8

L R S Flash Memory Summit 2014, Santa Clara, CA 54 / 58

LDPC code construction
Iterative Decoding

Graph-based codes Non-binary LDPC codes

Non-binary LDPC decoding

@ Decoding is more complex than in the binary case. Keep track
of g — 1 likelihoods on each edge.

@ Popular approaches:

o Direct implementation has complexity on the order of O(q?)
o FFT-based SPA has complexity on the order of O(qlog q)
e Min-sum and its variants can further reduce the complexity

L R S Flash Memory Summit 2014, Santa Clara, CA 55 / 58

Summary and Outlook

Algebraic codes (BCH) Graph-based codes (LDPC)
— Performance is acceptable + Performance is excellent
+ Guaranteed error correction — No guaranteed error correction
capability capability (but we have ideas)
+ Structure allows for efficient — Decoder complexity is acceptable
decoder implementation but now low

— Not amenable for soft decoding ~ + Amenable for soft decoding

With the move to MLC/TLC technologies, advanced coding
schemes will need to be considered!

L R S Flash Memory Summit 2014, Santa Clara, CA 56 / 58

Summary and Outlook

Further information, papers, references etc. available at
http://loris.ee.ucla.edu

Selected list:

@ L. Dolecek, D. Divsalar, Y. Sun and B. Amiri, "Non-Binary Protograph-Based LDPC Codes: Enumerators,
Analysis, and Designs,” |EEE Transactions on Information Theory, vol. 60 (7), pp. 3913 — 3941, July 2014

@ R. Gabrys, E. Yaakobi and L. Dolecek, " Graded bit error correcting codes with applications to Flash
memory,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2315 — 2327, Apr. 2013.

@ J. Wang, L. Dolecek and R. Wesel, " The Cycle Consistency Matrix Approach to Absorbing Sets in

Separable Circulant-Based LDPC Codes,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2293 —
2314, Apr. 2013.

@ B. Amiri, J. Kliewer, and L. Dolecek, " Analysis and Enumeration of Absorbing Sets for Non-Binary
Graph-Based Codes,” IEEE Transactions on Communications, vol. 62 (2), pp. 398 — 409, Feb. 2014.

L R S Flash Memory Summit 2014, Santa Clara, CA 57 / 58

Summary and Outlook

We would like to invite you to explore CoDESS:

http://www.uclacodess.org

UCLA Center on Development of Emerging Storage Systems (CoDESS)

‘CODESS KickoffMeeting:

Project Overview:

For more information, please contact

LORTS

Prof. Lara Dolecek
dolecek@ee.ucla.edu

Flash Memory Summit 2014, Santa Clara, CA

58 / 58

	Preliminaries
	Algebraic codes
	Algebra review
	BCH codes

	Graph-based codes
	LDPC code construction
	Iterative Decoding
	Non-binary LDPC codes

	Summary and Outlook

