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What is this tutorial about

Today we will

Learn the basics of ECC operations

Learn about fundamental coding approaches (BCH, LDPC)

Learn about the system-level perspective on ECC

Learn about recent advanced coding-oriented approaches to
Flash
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A Simple Channel/Storage Model

• Example : binary symmetric channel with equal error probability for 
transmission (storage) of either 0 or 1 .

• While highly simplistic, the BSC serves as a reasonable first-order 
approximation of Flash.

• In this example Pe = 0.01, Pr(success) = 1 – Pe = 0.99 .

• The probability of error for any single bit transmitted across the channel 
is the raw bit error rate, or RBER.  In this example, RBER = 0.01 .
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Errors in Flash are modeled as transmission a noisy
communication channel

The simplest example is binary symmetric channel (BSC).

This example:
1 Raw bit error rate (RBER) is 0.01.
2 Undetected bit error rate (UBER) is 0.01

Flash Memory Summit 2014, Santa Clara, CA 4 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

A simple example

Flash Memory Summit 2013
Santa Clara, CA 6

A Simple Channel/Storage Model

• Example : binary symmetric channel with equal error probability for 
transmission (storage) of either 0 or 1 .

• While highly simplistic, the BSC serves as a reasonable first-order 
approximation of Flash.

• In this example Pe = 0.01, Pr(success) = 1 – Pe = 0.99 .

• The probability of error for any single bit transmitted across the channel 
is the raw bit error rate, or RBER.  In this example, RBER = 0.01 .

1 1

00

99%

99%

CHANNEL
(STORAGE)

1%

1%

TX'd RX'd

Errors in Flash are modeled as transmission a noisy
communication channel

The simplest example is binary symmetric channel (BSC).

This example:
1 Raw bit error rate (RBER) is 0.01.
2 Undetected bit error rate (UBER) is 0.01

Flash Memory Summit 2014, Santa Clara, CA 4 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

Flash Memory Summit 2013
Santa Clara, CA 6

A Simple Channel/Storage Model

• Example : binary symmetric channel with equal error probability for 
transmission (storage) of either 0 or 1 .

• While highly simplistic, the BSC serves as a reasonable first-order 
approximation of Flash.

• In this example Pe = 0.01, Pr(success) = 1 – Pe = 0.99 .

• The probability of error for any single bit transmitted across the channel 
is the raw bit error rate, or RBER.  In this example, RBER = 0.01 .

1 1

00

99%

99%

CHANNEL
(STORAGE)

1%

1%

TX'd RX'd

Suppose we now use repetition coding

0→ 000, 1→ 111

Decoding rule:
Receive {000, 001, 010, 100} → Decide 0 was sent
Receive {111, 110, 101, 011} → Decide 1 was sent

RBER is still 0.01...What is UBER?
UBER is 0.013 + 3× 0.012 × 0.99 = 0.000298
This is now 33 times better!...Any downsides?
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A channel code C maps a message m of length k into a
codeword c of length n, with n > k (encoder).

Total number of codewords: 2k .

Code rate: R = k/n.

Structure of C is used to determine the stored message
(decoder).
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Repetition code example

input message codeword

0 000
1 111

Message length k = 1

Total number of codewords 21 = 2.

Codeword length n = 3.

Code rate R = 1/3.

Flash Memory Summit 2014, Santa Clara, CA 7 / 58
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Concepts of interest -ctd.

Linear block code C of dimension k and codeword length n can be
represented by

a k × n generator matrix G

mG = c

a (n − k)× n parity check matrix H

cHT = 0

G specifies the range space of C and H specifies the null
space of C .

The two representations are mathematically equivalent.
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Repetition code example

input message codeword

0 000
1 111

Generator matrix
G =

[
1 1 1

]
Parity check matrix

H =

[
1 1 0
1 0 1

]
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How many errors can you correct ?

Our toy repetition code corrects 1 error.

In general, k + d ≤ n + 1 , where

k is the message length, n is the codeword length

d is the minimum separation between codewords a.k.a.
minimum code distance

Code can correct t = b(d − 1)/2c errors.
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Computing UBER

For a code with message length k and codeword length n.

Exact:

UBER =
∑n

j=t+1 (nj)×RBER j×(1−RBER)n−j

k

Good approximation for small error values:

UBER =
( n
t+1)×RBERt+1×(1−RBER)n−t−1

k

Here,
(n
j

)
is the binomial coefficient n!

j!(n−j)!
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Concepts of interest

Linear block codes can be divided in two categories:

algebraic codes (BCH codes, Hamming codes, Reed-Solomon
codes)

graph-based codes (LDPC codes, Turbo codes)

A good practical channel code should

be able to correct as many transmission errors as possible with
the least overhead

be equipped with a simple decoding algorithm

Flash Memory Summit 2014, Santa Clara, CA 12 / 58
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Algebraic Codes
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Brief review of finite fields

Suppose q is prime.

GF (q) can be viewed as the set {0, 1, . . . , q − 1}.
Operations are performed modulo q.

Example:

GF (5) has elements {0, 1, 2, 3, 4} such that

product 0 1 2 3 4

0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

sum 0 1 2 3 4

0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

Flash Memory Summit 2014, Santa Clara, CA 14 / 58
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Brief review of finite fields

GF (q) can also be expressed as
{α−∞ = 0, α0 = 1, α, α2, . . . , αq−2}, for suitably chosen α.

Example:

In GF (5): 0→ α−∞, 1→ α0, 2→ α, 3→ α3 and 4→ α2

Consider an element α of GF (q) such that α 6= 0 and α 6= 1.

Let s be the smallest positive integer such that αs = 1. Then,
s is the order of α.

If s = q − 1, then α is called a primitive element of GF (q).

GF (q) is thus generated by powers of a primitive element α.

Flash Memory Summit 2014, Santa Clara, CA 15 / 58
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Brief review of finite fields

We are often interested in the extension field GF (qm) of
GF (q), where q is prime and m is a positive integer.
GF (qm) is then {α−∞ = 0, α0 = 1, α, α2, . . . , αqm−1}, where
α denotes a primitive element of GF (qm) and is a root of
so-called primitive polynomial.

Example:

GF (8) = GF (23).
Here, α is a root of the polynomial x3 + x + 1.
We then have

α0 = 1
α1 = α
α2 = α2

α3 = α + 1

α4 = α2 + α
α5 = α2 + α + 1
α6 = α2 + 1
α−∞ = 0

Flash Memory Summit 2014, Santa Clara, CA 16 / 58
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BCH code construction

BCH code C is a linear, cyclic code described by a (d − 1)× n
parity check matrix H with elements from GF (qm) with α having
order n:

H =


1 αb α2b · · · α(n−1)b

1 αb+1 α2(b+1) · · · α(n−1)(b+1)

...
...

... · · ·
...

1 αb+d−2 α2(b+d−2) · · · α(n−1)(b+d−2)


b is any (positive) integer and d is integer 2 ≤ d ≤ n.

Minimum distance of C is at least d . The code corrects at
least t = bd−12 c errors.

Flash Memory Summit 2014, Santa Clara, CA 17 / 58
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BCH code construction

If α is a primitive element, then the blocklength is n = qm − 1
(largest possible).

If b = 1, BCH code is called narrow-sense (simplifies some
encoding and decoding operations).

For m = 1, BCH codes are also known as Reed-Solomon
codes.

Flash Memory Summit 2014, Santa Clara, CA 18 / 58
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BCH code properties

A code C is called a cyclic code if all cyclic shifts of a
codeword in C are also codewords.

Example:

Suppose (0, 1, 0, 1, 1)↔ x3 + x + 1 is a codeword in C . Then
so are (1, 0, 1, 1, 0), (0, 1, 1, 0, 1), (1, 1, 0, 1, 0) and
(1, 0, 1, 0, 1).

Cyclic code is generated by a generator polynomial g(x), such
that each codeword c corresponds to a polynomial
pc(x) = m(x)g(x). All rows of the generator matrix G are
cyclic shifts of g(x).

BCH code: Each codeword c corresponds to a polynomial
pc(x) = m(x)g(x) where g(x) is LCM of
(x − αb)(x − αb+1) · · · (x − αb+d−2).

Flash Memory Summit 2014, Santa Clara, CA 19 / 58
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BCH code example

Let’s construct a narrow-sense BCH code over GF (8)
correcting t = 1 error and of length n = 7.

We consider a primitive element α that satisfies
α3 + α + 1 = 0. Notice that α7 = 1.

Then,

H =

[
1 α α2 α3 α4 α5 α6

1 α2 α4 α6 α8 α10 α12

]
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BCH code example

We can interpret this code in the binary domain by substituting

1→

 1
0
0

 α→

 0
1
0

 α2 →

 0
0
1

 α3 →

 1
1
0



α4 →

 0
1
1

 α5 →

 1
1
1

 α6 →

 1
0
1

 0→

 0
0
0
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BCH code example

We can then interpret this parity check matrix in the binary
domain as

H =



1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

1 0 0 1 0 1 1
0 0 1 0 1 1 1
0 1 1 1 0 0 1


Here H is 6× 7 and has rank 3. This code can correct 1 error.

Flash Memory Summit 2014, Santa Clara, CA 22 / 58
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Decoding BCH codes

Decoding algorithm heavily relies on the algebraic structure of the
code: recall that each codeword polynomial c(x) must have as
roots αb, αb+1,..,αb+d−2.

1 Compute the syndromes of the received polynomial r(x)– tells
us which of α’s are not the roots.

2 Based on the syndromes, compute the locations of the errors
(system of linear equations).

3 Compute the error values at these location (system of
non-linear equations that are in the Vandermode form)

4 Based on steps 2 and 3, build error polynomial e(x).

5 Add e(x) to r(x) to produce the estimate of c(x).

Flash Memory Summit 2014, Santa Clara, CA 23 / 58
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Decoding BCH codes

If the system of equations cannot be solved, declare a
decoding failure. This is a hard limit on the number of
correctable errors.

Implementation can be greatly reduced using the
shift-registers viewpoint in the Berlekamp-Massey algorithm.

Flash Memory Summit 2014, Santa Clara, CA 24 / 58
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BCH code parameter tradeoffs

For fixed code length and RBER, how does UBER depend on t ?
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Graph-Based Codes
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LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Low Density Parity Check (LDPC) Codes

Definition 1: LDPC code

An LDPC block code C is a linear block code whose parity-check
matrix H has a small number of ones in each row and column.

Invented by Gallager in 1963 but were all but forgotten until
late 1990’s.

In the limit of very large block-lengths LDPC codes are known
to approach the Shannon limit (i.e., the highest rate at which
the code can be designed that guarantees reliable
communication)

LDPC codes are amenable to low-complexity iterative
decoding.

Flash Memory Summit 2014, Santa Clara, CA 32 / 58
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An Example

LDPC code described by the sparse parity check matrix H:

H =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0


Matrix H has 9 columns and 6 rows.

There are 9 coded bits and 6 parity-check equations.
Each coded bit participates `=2 parity-check equations and each
parity-check equation contains r = 3 coded bits.
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LDPC Preliminaries

Definition 3: Tanner graph

A Tanner graph of a code C with a parity check matrix H is the
bipartite graph such that:

each coded symbol i is represented by a variable node vi ,

each parity-check equation j is represented by a check node cj ,

there exists an edge between a variable node and a check
node if and only if H(j , i) = 1.
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An Example

LDPC code: parity check matrix H and its Tanner graph

H =


1
0
0
1
0
0

0
1
0
0
1
0

0
0
1
0
0
1

1
0
0
0
1
0

0
1
0
0
0
1

0
0
1
1
0
0

1
0
0
0
0
1

0
1
0
1
0
0

0
0
1
0
1
0



c1
c2
c3
c4
c5
c6

v1 v2 v3 v4 v5 v6 v7 v8 v9

Parity check c3: v3 + v6 + v9 ≡ 0 over GF (2).
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Message Passing Decoding

Message-passing (belief propagation) is an iterative decoding
algorithm that operates on the Tanner graph of the code.
In each iteration of the algorithm:

1 (bit-to-check) Each variable node sends a message to each
check node it is connected to,

2 (check processing) Each check node then computes the
consistency of incoming messages,

3 (check-to-bit) Each check node then sends a message to each
variable node it is connected to,

4 (bit processing) Each variable node (coded symbol) updates
its value.
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Message Passing Decoding

Passed messages can be either

Hard decisions: 0 or 1

Soft decisions/likelihoods: real numbers
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An Example

!"#$%&'( )&#$%&'(

*"+,-(.&//01&( #$%&2$'%( '&-'*&3&%(2$'%( %&#$%&%(.&//01&(

4( 5(4464( 4664(

7$*/8(9:0""&;(

Message m       Codeword y 
     m1                   y1y2y3y4 

      0           !      0 0 0 0 
      1           !      1 1 0 1 

y1                     y2                         y3                      y4 

y1+y2+y3 = 0  y2+y3 + y4= 0  y1+y3+y4 = 0  
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Message Passing Decoding

Bit-flipping algorithm
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Received Codeword

1 0 0 1

y1+y2+y3 y1+y3+y4 y2+y3+y4 
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Bit-to-Check Messages

1 0 0 1

1+y2+y3 1+y3+y4 y2+y3+y4 
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Bit-to-Check Messages

1 0 0 1

1+0+y3 1+y3+y4 0+y3+y4 
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Check Processing

1 0 0 1

1+0+0=1 ?? 1+0+y4 0+0+y4 
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1 0 0 1

1+0+0=1 ?? 1+0+1= 0 √ 0+0+1= 1 ?? 
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Check-to-Bit Messages

1 0 0 1

1+0+0=1 ?? 1+0+1= 0 √ 0+0+1= 1 ?? 

Flip, Flip, Flip,  
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1 1 0 1
Stay,  Stay,  Stay,  

1+1+0 = 0 √ 1+0+1 = 0 √ 1+0+1 = 0 √
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1 1 0 1
Stay, Stay Stay, Stay Stay, Stay, Stay Stay, Stay 

1+1+0 = 0 √ 1+0+1 = 0 √ 1+0+1 = 0 √
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Bit Processing

1 1 0 1

1+1+0 = 0 √ 1+0+1 = 0 √ 1+0+1 = 0 √

Decoded Codeword 
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Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log P(xi=0|yi )

P(xi=1|yi ) .

Sum-product algorithm (SPA) [1,2]

bit-to-check L(vi → cj) =∑
j ′∈N(i)\j L(c ′j → vi ) + Lint(vi )

check-to-bit L(cj → vi ) =

Φ−1
(∑

i ′∈N(j)\i Φ(|L(v ′i → cj)|)
∑

i ′∈N(j)\i sgn(L(v ′i → cj))
)

where Φ(x) = − log(tanh(x/2))

Min-sum algorithm (MSA) [3]

check-to-bit L(cj → vi ) =
mini ′∈N(j)\i |L(v ′i → cj)|

∏
i ′∈N(j)\i sgn(L(v ′i → cj))

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.

[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

Flash Memory Summit 2014, Santa Clara, CA 50 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Soft Iterative Decoding

Improved variants of message passing algorithm use soft
information as messages, i.e., log-likelihood ratio L = log P(xi=0|yi )

P(xi=1|yi ) .

Sum-product algorithm (SPA) [1,2]

bit-to-check L(vi → cj) =∑
j ′∈N(i)\j L(c ′j → vi ) + Lint(vi )

check-to-bit L(cj → vi ) =

Φ−1
(∑

i ′∈N(j)\i Φ(|L(v ′i → cj)|)
∑

i ′∈N(j)\i sgn(L(v ′i → cj))
)

where Φ(x) = − log(tanh(x/2))

Min-sum algorithm (MSA) [3]

check-to-bit L(cj → vi ) =
mini ′∈N(j)\i |L(v ′i → cj)|

∏
i ′∈N(j)\i sgn(L(v ′i → cj))

[1] R. Gallager, MIT Press, 1963.
[2] T. Richardson and R. Urbanke, IEEE Trans. on Info. Theory, 2001.

[3] M. P. C. Fossorier, M. Mihaljevic, and H. Imai, IEEE Trans. on Comm., 1999.

Flash Memory Summit 2014, Santa Clara, CA 50 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Soft Decoding

Bit values 1 1 0 1

Flash Memory Summit 2014, Santa Clara, CA 51 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Soft Decoding

Bit values 1 1 0 1

Values using BPSK -1 -1 +1 -1

Flash Memory Summit 2014, Santa Clara, CA 51 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Soft Decoding

Bit values 1 1 0 1

Values from channel -1.1 0.1 1.2 -0.9

Values using BPSK -1 -1 +1 -1

Flash Memory Summit 2014, Santa Clara, CA 51 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Soft Decoding

Bit values 1 1 0 1

Beliefs -2.2 0.2 2.4 -1.8

Values from channel -1.1 0.1 1.2 -0.9

Values using BPSK -1 -1 +1 -1
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Bit values 1 1 0 1

Beliefs -2.2 0.2 2.4 -1.8
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Beliefs -2.2 0.2 2.4 -1.8

Values from channel -1.1 0.1 1.2 -0.9

-3.4108 -2.7893 3.5621 -3.2453

Values using BPSK -1 -1 +1 -1

Bit values 1 1 0 1
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-1.3774

-0.1599

1.3051

-0.1430

-1.6119

0.1666

 

𝐿𝑣𝑖 = 𝐿𝑣𝑖
(𝑖𝑛𝑡 )

+  𝐿𝑐𝑗→𝑣𝑗
𝑐𝑗→𝑣𝑖

 

Flash Memory Summit 2014, Santa Clara, CA 51 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

LDPC code construction
Iterative Decoding
Non-binary LDPC codes

Soft Decoding

Beliefs -2.2 0.2 2.4 -1.8
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All variable nodes are decoded to correct bit value.

1 1 0 1
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Performance with multi read

Figure: Rate 0.9 LDPC and BCH codes of length n = 9100.
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Fig. 9. MI vs. q for various SNRs for the Gaussian model of MLC
(four-level) Flash with the erasure regions in Fig. 8 of size 2q and cen-
tered on the natural hard-decoding thresholds for Gaussians with means
{µ1, µ2, µ3, µ4} = {−3, −1, 1, 3}.
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unconstrained

Fig. 10. MI vs. SNR for thresholds for MLC with six reads where optimiza-
tion is either constrained by a single parameter q or fully unconstrained.

studied in Fig. 9 cause a significant reduction in MMI as
compared to unconstrained thresholds. Fig. 10 compares the
performance of the constrained optimization, which has a
single parameter q, and the full unconstrained optimization.
As shown in the figure, the benefit of fully unconstrained
optimization is insignificant.
Fig. 11 shows performance of unconstrained MMI quan-

tization on the Gaussian channel model of Fig. 8 for three
and six reads for Codes 1 and 2. With four levels, three reads
are required for hard decoding. For MLC (four-level) Flash,
using six reads recovers more than half of the gap between
hard decoding (three reads) and full soft-precision decoding.
This is similar to the performance improvement seen for SLC
(two-level) Flash when increasing from one read to two reads.
Note that in Fig. 11, the trade-off between performance

with soft decoding and performance with hard decoding is
even more pronounced. Code 1 is clearly superior with soft
decoding but demonstrates a noticeable error floor when
decoded with three or six reads.
LDPC error floors due to absorbing sets can be sensitive
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Soft Code 1
Hard (3 reads)
Shannon Limit
6 reads
Shannon Limit MMI
Soft Shannon Limit

Fig. 11. FER vs. channel bit error probability simulation results using the
Gaussian channel model for 4-level MLC comparing LDPC Codes 1 and 2
with varying levels of soft information and a BCH code with hard decoding.
All codes have rate 0.9021.

Fig. 12. A (4,2) absorbing set. Variable nodes are shown as black circles.
Satisfied check nodes are shown as white squares. Unsatisfied check nodes
are shown as black squares. Note that each of the four variable nodes has
degree three. This absorbing set is avoided by precluding degree-3 nodes.

to the quantization precision, occurring at low precision but
not at high precision [27], [28]. Code 1 has small absorbing
sets including the (4, 2), (5, 1), and (5, 2) absorbing sets. As
shown in Fig. 12 for the (4,2) absorbing set, these absorbing
sets can all be avoided by precluding degree-three variable
nodes. Code 2 avoids these absorbing sets because it has no
degree-3 variable nodes. As shown in Fig. 11, Code 2 avoids
the error floor problems of Code 1.

B. A More Realistic Model

We can extend the MMI analysis of Section III-B to any
model for the Flash memory read channel. Consider again
the 4-level 6-read MLC as a 4-input 7-output DMC. Instead
of assuming Gaussian noise distributions as shown in Fig. 8,
Fig. 13 shows the four conditional threshold-voltage proba-
bility density functions generated according to the six-month
retention model of [16] and the six word-line voltages that
maximize MI for this noise model. While the conditional noise
for each transmitted (or written) threshold voltage is similar to
that of a Gaussian, the variance of the conditional distributions
varies greatly across the four possible threshold voltages. Note
that the lowest threshold voltage has by far the largest variance.

Caution:

Optimal code design in the error floor region depends on the
chosen quantization.
AWGN-optimized LDPC codes may not be the best for the
quantized (and asymmetric) Flash channel !
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Figure: Rate 0.9 LDPC and BCH codes of length n = 9100.
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Fig. 9. MI vs. q for various SNRs for the Gaussian model of MLC
(four-level) Flash with the erasure regions in Fig. 8 of size 2q and cen-
tered on the natural hard-decoding thresholds for Gaussians with means
{µ1, µ2, µ3, µ4} = {−3, −1, 1, 3}.
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Fig. 10. MI vs. SNR for thresholds for MLC with six reads where optimiza-
tion is either constrained by a single parameter q or fully unconstrained.

studied in Fig. 9 cause a significant reduction in MMI as
compared to unconstrained thresholds. Fig. 10 compares the
performance of the constrained optimization, which has a
single parameter q, and the full unconstrained optimization.
As shown in the figure, the benefit of fully unconstrained
optimization is insignificant.
Fig. 11 shows performance of unconstrained MMI quan-

tization on the Gaussian channel model of Fig. 8 for three
and six reads for Codes 1 and 2. With four levels, three reads
are required for hard decoding. For MLC (four-level) Flash,
using six reads recovers more than half of the gap between
hard decoding (three reads) and full soft-precision decoding.
This is similar to the performance improvement seen for SLC
(two-level) Flash when increasing from one read to two reads.
Note that in Fig. 11, the trade-off between performance

with soft decoding and performance with hard decoding is
even more pronounced. Code 1 is clearly superior with soft
decoding but demonstrates a noticeable error floor when
decoded with three or six reads.
LDPC error floors due to absorbing sets can be sensitive
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Fig. 11. FER vs. channel bit error probability simulation results using the
Gaussian channel model for 4-level MLC comparing LDPC Codes 1 and 2
with varying levels of soft information and a BCH code with hard decoding.
All codes have rate 0.9021.

Fig. 12. A (4,2) absorbing set. Variable nodes are shown as black circles.
Satisfied check nodes are shown as white squares. Unsatisfied check nodes
are shown as black squares. Note that each of the four variable nodes has
degree three. This absorbing set is avoided by precluding degree-3 nodes.

to the quantization precision, occurring at low precision but
not at high precision [27], [28]. Code 1 has small absorbing
sets including the (4, 2), (5, 1), and (5, 2) absorbing sets. As
shown in Fig. 12 for the (4,2) absorbing set, these absorbing
sets can all be avoided by precluding degree-three variable
nodes. Code 2 avoids these absorbing sets because it has no
degree-3 variable nodes. As shown in Fig. 11, Code 2 avoids
the error floor problems of Code 1.

B. A More Realistic Model

We can extend the MMI analysis of Section III-B to any
model for the Flash memory read channel. Consider again
the 4-level 6-read MLC as a 4-input 7-output DMC. Instead
of assuming Gaussian noise distributions as shown in Fig. 8,
Fig. 13 shows the four conditional threshold-voltage proba-
bility density functions generated according to the six-month
retention model of [16] and the six word-line voltages that
maximize MI for this noise model. While the conditional noise
for each transmitted (or written) threshold voltage is similar to
that of a Gaussian, the variance of the conditional distributions
varies greatly across the four possible threshold voltages. Note
that the lowest threshold voltage has by far the largest variance.

Caution:

Optimal code design in the error floor region depends on the
chosen quantization.
AWGN-optimized LDPC codes may not be the best for the
quantized (and asymmetric) Flash channel !
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Non-binary LDPC codes

Entries in the parity check matrix H are taken from GF (q).
Example: GF (8) = 0, 1, 2, ..., 7. (with αk → k + 1 for 0 ≤ k ≤ 6)

H =


1 0 0 3 0 0 5 0 0
0 2 0 0 6 0 0 2 0
0 0 3 0 0 1 0 0 1
1 0 0 0 0 5 0 7 0
0 3 0 2 0 0 0 0 4
0 0 6 0 7 0 1 0 0


c1
c2
c3
c4
c5
c6

v1 v2 v3 v4 v5 v6 v7 v8 v9

Parity check c3: 3v3 + v6 + v9 ≡ 0 over GF (8).

See talk on Thursday: Flash Controller Design (8:30 – 10:50)
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Performance evaluation

Figure: Non-binary LDPC codes vs. BCH codes performance comparison
for AWGN channel. Code rate is 0.9, block length is 1000 bits. BCH
code corrects 13 errors.
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Non-binary LDPC decoding

Decoding is more complex than in the binary case. Keep track
of q − 1 likelihoods on each edge.

Popular approaches:

Direct implementation has complexity on the order of O(q2)
FFT-based SPA has complexity on the order of O(q log q)
Min-sum and its variants can further reduce the complexity
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Algebraic codes (BCH)

– Performance is acceptable

+ Guaranteed error correction
capability

+ Structure allows for efficient
decoder implementation

– Not amenable for soft decoding

Graph-based codes (LDPC)

+ Performance is excellent

– No guaranteed error correction
capability (but we have ideas)

– Decoder complexity is acceptable
but now low

+ Amenable for soft decoding

With the move to MLC/TLC technologies, advanced coding
schemes will need to be considered!

Flash Memory Summit 2014, Santa Clara, CA 56 / 58



Preliminaries
Algebraic codes

Graph-based codes
Summary and Outlook

Further information, papers, references etc. available at
http://loris.ee.ucla.edu

Selected list:

L. Dolecek, D. Divsalar, Y. Sun and B. Amiri, ”Non-Binary Protograph-Based LDPC Codes: Enumerators,

Analysis, and Designs,” IEEE Transactions on Information Theory, vol. 60 (7), pp. 3913 – 3941, July 2014

R. Gabrys, E. Yaakobi and L. Dolecek, ”Graded bit error correcting codes with applications to Flash

memory,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2315 – 2327, Apr. 2013.

J. Wang, L. Dolecek and R. Wesel, ”The Cycle Consistency Matrix Approach to Absorbing Sets in

Separable Circulant-Based LDPC Codes,” IEEE Transactions on Information Theory, vol. 59(4), pp. 2293 –
2314, Apr. 2013.

B. Amiri, J. Kliewer, and L. Dolecek, ”Analysis and Enumeration of Absorbing Sets for Non-Binary

Graph-Based Codes,” IEEE Transactions on Communications, vol. 62 (2), pp. 398 – 409, Feb. 2014.
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We would like to invite you to explore CoDESS:

http://www.uclacodess.org

For more information, please contact

Prof. Lara Dolecek
dolecek@ee.ucla.edu
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