
Making Error Correcting Codes Work
for Flash Memory

Part III: New Coding Methods

Anxiao (Andrew) Jiang

Department of Computer Science and Engineering
Texas A&M University

Tutorial at Flash Memory Summit, August 4, 2014

1 / 85

Acknowledgment to: Wenyi Zhu (for artistic illustrations)

2 / 85

3 / 85

Constrained Coding

4 / 85

Constrained coding for inter-cell interference

Inter-cell interference in flash memory:
The Vth shift of middle cell caused by shifting of neighboring cells is

∆Vi,j = Cx(∆Vi−1,j + ∆Vi+1,j) + Cy (∆Vi,j−1 + ∆Vi,j+1)
+Cx,y (∆Vi−1,j−1 + ∆Vi+1,j−1 + ∆Vi−1,j+1 + ∆Vi+1,j+1)

V i,jVi-1,j Vi+1,j

Vi,j+1Vi-1,j+1 Vi+1,j+1

Vi,j-1Vi-1,j-1 Vi+1,j-1

CxCx

Cy

Cy

Cx,y
Cx,y

Cx,y Cx,y

5 / 85

One constraint to set for q-level cells: The difference between
adjacent levels cannot be too large.
A concrete example: Avoid (q − 1)0(q − 1) pattern for adjacent
cell levels.

Minghai Qin, Eitan Yaakobi, and Paul Siegel, “Constrained codes that mitigate

intercell interference in read/write cycles for flash memories,” in JSAC Special

Issue, May 2014.

6 / 85

Further reading

F. Sala and L. Dolecek, “Constrained rank modulation schemes,” in ITW
2013.

K. A. S. Immink, “Coding schemes for multi-level channels with unknown
gain and/or offset,” in ISIT 2013.

K. A. S. Immink and J. H. Weber, “Minimum Pearson distance detection
for multi-level channels with gain and/or offset mismatch,” draft 2014.

A. Berman and Y. Birk, “Error correction scheme for constrained
inter-cell coupling in flash memory,” NVMW 2011.

G. Dong, S. Li and T. Zhang, “Using data post-compensation and
pre-distortion to tolerate cell-to-cell interference in MLC NAND flash
memory,” in IEEE Trans. Circuits and Systems I, 2010.

E. Ordentlich, G. Ribeiro, R. M. Roth, G. Seroussi, and P. O. Vontobel,
“Coding for limiting current in memristor crossbar memories,” NVMW
2011.

Y. Cassuto, S. Kvatinsky and E. Yaakobi, “Sneak-path constraints in
memristor crossbar arrays,” in ISIT 2013.

7 / 85

8 / 85

9 / 85

Rewriting Data in Flash Memories [1][2][3]

Basic concepts:

Rewriting: Change the value of the stored data.

Requirement: The cell levels can only increase, not decrease,
in order to avoid block erasures.

Objective: Maximize the number of times the data are
rewritten, or maximize the summation of the code rates over
the multiple rewrites.

Papers in ISIT 2007:
[1] A. Jiang, V. Bohossian and J. Bruck, “Floating codes for joint information storage in write asymmetric
memories,” in Proc. ISIT, pp. 1166-1170, 2007.
[2] V. Bohossian, A. Jiang and J. Bruck, “Buffer coding for asymmetric multi-level memory,” in Proc. ISIT, pp.
1186-1190, 2007.

[3] A. Jiang, “On the generalization of error-correcting WOM codes,” in Proc. ISIT, pp. 1391-1395, 2007.

10 / 85

Write Once Memory (WOM) [1]

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

[1] R. L. Rivest and A. Shamir, “How to reuse a ‘write-once’ memory,” in Information and Control, vol. 55, pp.

1-19, 1982.

11 / 85

Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10

12 / 85

Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
2nd write: 01

13 / 85

Write Once Memory (WOM)

Example: Store 2 bits in 3 SLCs. Write the 2-bit data twice.

000

010100 001

101110 011

111

00

10 11 01

00

1001 11

Data:

Cell Levels:

1st write: 10
2nd write: 01

Sum rate: 2
3 + 2

3 = 1.33

14 / 85

Capacity of WOM [1][2]

For WOM of q-level cells and t rewrites, the capacity (maximum
achievable sum rate) is

log2

(
t + q − 1

q − 1

)
.

bits per cell.

[1] C. Heegard, On the capacity of permanent memory, in IEEE Trans. Information Theory, vol. IT-31, pp. 34-42,
1985.
[2] F. Fu and A. J. Han Vinck, On the capacity of generalized write-once memory with state transitions described

by an arbitrary directed acyclic graph, in IEEE Trans. Information Theory, vol. 45, no. 1, pp. 308-313, 1999.

15 / 85

Capacity of WOM

16 / 85

17 / 85

For Rewriting to be used in flash memories, it is CRITICAL to
combine it with Error-Correcting Codes.

18 / 85

A joint coding scheme for rewriting and error correction, which can
correct a substantial number of errors and supports any number of
rewrites.

A. Jiang, Yue Li, Eyal En Gad, Michael Langberg, and Jehoshua Bruck, “Joint

rewriting and error correction in write-once memories,” in ISIT 2013.

19 / 85

Model of rewriting and noise:

1st
write BSC(p) 2nd

write BSC(p) t-th
write BSC(p)

20 / 85

Lower bound to achievable sum-rate (for WOM):

is

Mj =|FWOM(αj−1,�j)
| − |FWOM(αj−1,�j)

∩ FBSC(p)|
=Nαj−1 H(�j) − xj|FBSC(p)|
=N(αj−1 H(�j) − xj H(p))

and the number of additional cells we use to store the bits in
FBSC(p) − FWOM(αj−1,�j)

is

Nadditional,j =
N H(p)(1 − xj)

1 − H(p)

Therefore, the sum-rate is Rsum � ∑t
j=1 Mj

N+∑t
j=1 Nadditional,j

=
∑t

j=1 αj−1 H(�j) − H(p) ∑t
j=1 xj

1 + H(p)
1−H(p) ∑t

j=1(1 − xj)

=
(1 − H(p)) ∑t

j=1 αj−1 H(�j) − H(p)(1 − H(p)) ∑t
j=1 xj

(1 − H(p) + H(p)t) − H(p) ∑t
j=1 xj

=(1 − H(p)) ·
1

H(p) ∑t
j=1 αj−1 H(�j) − ∑t

j=1 xj

1−H(p)+H(p)t
H(p)

− ∑t
j=1 xj

.

Let γj � max

�
αj−1 H(

p
αj−1

)

H(p)
,

αj−1 H(�j)+H(p)−H(αj−1�j)

H(p)

�
.

Lemma 5. Let 0 < p ≤ αj−1�j. Then xj ≥ γj.

Proof: By Lemma 3, we have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1, p

αj−1
)|

|FBSC(p)|
=

αj−1 H(p
αj−1

)

H(p)
.

By Lemma 4, we also have

xj =
|FWOM(αj−1,�j)

∩ FBSC(p)|
|FBSC(p)|

≥
|FWOM(αj−1,�j)

| + |FBSC(p)| − |FBSC(αj−1�j)
|

|FBSC(p)|

=
αj−1 H(�j) + H(p) − H(αj−1�j)

H(p)
.

Theorem 6 Let 0 < p ≤ αj−1�j for j = 1, 2, · · · , t. If
∑t

j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, then the sum-rate
Rsum is lower bounded by

(1 − H(p))
∑t

j=1
�
αj−1 H(�j) − H(p)γj

�

1 − H(p) + H(p)t − H(p) ∑t
j=1 γj

.

If ∑t
j=1 αj−1 H(�j) < 1 − H(p) + H(p)t, and H(p) ≤

αj−1 H(�j) for j = 1, 2, · · · , t, then Rsum is lower bounded

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1 2 3 4 5 6 7 8 9 10

Lo
w

er
 B

ou
nd

 to
 A

ch
ie

va
bl

e
S

um
-r

at
e

t

Noiseless
p = 0.001
p = 0.005
p = 0.010
p = 0.016

Fig. 6. Lower bound to achievable sum-rates for different error probability
p.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 1 2 3 4 5 6 7 8 9 10

Lo
w

er
 B

ou
nd

 to
 A

ch
ie

va
bl

e
S

um
-r

at
e

t

Noiseless
p = 0.001
p = 0.005
p = 0.010
p = 0.016

Fig. 7. Lower bound to achievable sum-rates for different error probability
p. Here each rewriting step writes the same number of bits.

by �
t

∑
j=1

αj−1 H(�j)

�
− H(p)t.

Proof: If ∑t
j=1 αj−1 H(�j) ≥ 1 − H(p) + H(p)t, the

sum-rate is minimized when xj (j = 1, 2, · · · , t) takes the
minimum value, and we have xj ≥ γj. Otherwise, the sum-
rate is minimized when xj takes the maximum value 1.

We show some numerical results of the lower bound to sum-
rate Rsum in Figure 6, where we let �i = 1

2+t−i . The curve
for p = 0 is the optimal sum-rate for noiseless WOM code.
The other four curves are the lower bounds for noisy WOM
with p = 0.001, p = 0.005, p = 0.010 and p = 0.016,
respectively, given by Theorem 6. Note that it is possible to
further increase the lower bound values by optimizing �i. We
also show in Figure 7 the lower bound to sum-rate when each
step writes the same number of bits.

21 / 85

Further reading

G. D. Cohen, P. Godlewski, and F. Merkx, “Linear binary code for write-
once memories,” in IEEE Trans. Information Theory, vol. IT-32, pp.
697-700, 1986.

Y. Wu, Low complexity codes for writing write-once memory twice, 2010.

E. Yaakobi, S. Kayser, P. H. Siegel, A. Vardy and J. K. Wolf, Codes for
write-once memories, 2012.

R. Gabrys, E. Yaakobi, L. Dolecek, P. H. Siegel, A. Vardy and J. Wolf,
Non-binary WOM-codes for multilevel flash memories, 2011.

A. Shpilka, Capacity achieving two-write WOM codes, 2012.

E. Yaakobi and A. Shpilka, High sum-rate three-write and non-binary
WOM codes, 2012.

A. Shpilka, Capacity achieving multiwrite WOM codes, 2012.

22 / 85

23 / 85

Rank Modulation

24 / 85

1. Motivation and definition

Parallel cell programming for MLC

25 / 85

Challenges of parallel cell programming for MLC

Muti-level cell (MLC): Parallel programming, common thresholds, heterogeneous cells, random process

of charge injection, over-injection of charge, disturbs and inter-cell interference, block erasure, difficulty in adjusting

threshold voltages, very careful repeated charge injection and measuring.

26 / 85

Challenges of parallel cell programming for MLC

Dilemma among:

Capacity

Speed

Reliability and endurance

Due to: Inflexibility in adjusting cell levels.

27 / 85

Definition (Rank Modulation)

Use the relative order of cell levels to represent data.

A. Jiang, R. Mateescu, M. Schwartz and J. Bruck, “Rank modulation for flash

memories,” in ISIT 2008.

28 / 85

Some advantages of rank modulation:

1 Flexibility in adjusting relative cells levels,
even though we can only increase cell levels;

2 Tolerance for charge leakage / cell level drifting;

3 Enable memory scrubbing without block erasure.

29 / 85

2. Extended models of rank modulation

30 / 85

Extension: Rank modulation with multiple permutations

Some advantages: (1) Enable the building of long codes; (2) Cells in

different permutations can have very close cell levels.

F. Zhang, H. Pfister and A. Jiang, “LDPC codes for rank modulation in flash

memories,” in ISIT 2010.

31 / 85

Extension: Rank modulation with multi-set permutation

Example: A group of n = 6 cells

Some advantages: Similar to multiple permutations, but more suitable if

cells can be programmed accurately.

32 / 85

Example: Every rank has one cell

33 / 85

Example: Every rank has two cells

34 / 85

Example: Every rank has three cells

35 / 85

Extension: Bounded rank modulation
Z. Wang, A. Jiang and J. Bruck, “On the capacity of bounded rank modulation for flash memories,” in

ISIT 2009.

Extension: Local rank modulation
M. Schwartz, “Constant-weight Gray codes for local rank modulation,” in ISIT 2010.

Extension: Partial rank modulation:
Z. Wang and J. Bruck, “Partial rank modulation for flash memories,” in ISIT 2010.

Some advantages: Faster read, and/or enabling long codewords.

36 / 85

37 / 85

Definition (Rewrite)

Change data by changing the permutation – by moving cell levels
up.

38 / 85

Virtual levels to help us estimate rewriting cost (increase in cell levels).

39 / 85

Get the permutation right from low to high.

40 / 85

Get the permutation right from low to high.

41 / 85

Get the permutation right from low to high.

42 / 85

Rewriting cost: 1.

43 / 85

Code construction for rewriting

Consider: Store data of k values in n cells.

44 / 85

Every subset of permutations represents one value of the data.

45 / 85

Consider one such subset, which represents one particular data
value.

46 / 85

Say the red dot is the current state of the n cells. We want to
change the data to the value represented by the green subset · · ·

47 / 85

Bound the rewriting cost by r .

48 / 85

The green subset needs to be a dominating set of incoming
covering radius r .

49 / 85

We show an optimal code as an example.
Parameters: n = 4 cells, k = 6 data values, rewriting cost r = 1.

E. En Gad, A. Jiang and J. Bruck, “Compressed encoding for rank modulation,” in ISIT 2011.

50 / 85

51 / 85

Every row (subgroup) is a dominating set of radius 1.

So we can map the 6 cosets to 6 data values. The code has a
bounded rewriting cost of 1.

52 / 85

Every row (subgroup) is a dominating set of radius 1.

So we can map the 6 cosets to 6 data values. The code has a
bounded rewriting cost of 1.

52 / 85

53 / 85

1 Model errors: Noise modeling, and error quantization.

2 Design ECC.

54 / 85

Kendall-τ distance

55 / 85

Definition (Kendall-tau distance)

The number of adjacent transpositions to change one permutation
into another. (The distance is symmetric.)

Example

For permutations α = [2, 1, 3, 4] and β = [2, 3, 4, 1], the Kendall-τ
distance dτ (α, β) = 2 because
[2, 1, 3, 4]→ [2, 3, 1, 4]]→ [2, 3, 4, 1].

56 / 85

We can define an adjacency graph for permutations based on
Kendall-τ distance.

Example

Permutations Sn with n = 4.

1234

2134

3124

4123

3214

4213

1324

2314

4312

1423

2413

3412

4321

3421

4132 4231

1432

2431 2143

3142

1243

3241

1342

2341

57 / 85

An technique for ECC construction: Embedding

Other techniques: Interleaving (product of sub-codes), modular (for

limited-magnitude errors), etc.

58 / 85

Theorem

The adjacency graph for permutations is a subgraph of an
(n − 1)-dimensional array, whose size is 2× 3× · · · × n.

1234

2134

3124

4123

3214

4213

1324

2314

4312

1423

2413

3412

4321

3421

4132 4231

1432

2431 2143

3142

1243

3241

1342

2341

A. Jiang, M. Schwartz and J. Bruck, Error-correcting codes for rank modulation, in ISIT 2009.

59 / 85

Construction (One-Error-Correcting Rank Modulation Code)

Let C1,C2 ⊆ Sn denote two rank modulation codes constructed as
follows. Let A ∈ Sn be a general permutation whose inversion vector is
(x1, x2, · · · , xn−1). Then A is a codeword in C1 iff the following equation
is satisfied:

n−1∑

i=1

ixi ≡ 0 (mod 2n − 1)

A is a codeword in C2 iff the following equation is satisfied:

n−2∑

i=1

ixi + (n − 1) · (−xn−1) ≡ 0 (mod 2n − 1)

Between C1 and C2, choose the code with more codewords as the final
output.

60 / 85

For the above code, it can be proved that:

The code can correct one Kendall error.

The size of the code is at least (n−1)!
2 .

The size of the code is at least half of optimal.

61 / 85

Codes correcting more Kendall errors are constructed based on
embedding.

First, consider codes of the following form:

Let m ≥ n− 1 and let h1, · · · , hn−1 be a set of integers, where
0 < hi < m for i = 1, · · · , n − 1. Define the code as follows:

C = {(x1, x2, · · · , xn−1) |
n−1∑

i=1

hixi ≡ 0 mod m}

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 854–858, June 2010.

62 / 85

Capacity with Kendall-τ distance

Let the number of cells n→∞. Consider capacity.

Theorem (Capacity of Rank Modulation ECC with n→∞)

Let A(n, d) be the maximum number of permutations in Sn with
minimum Kendall-tau distance d. We call

C (d) = lim
n→∞

ln A(n, d)

ln n!

the capacity of rank modulation ECC of Kendall-tau distance d. Then,

C (d) =





1 if d = O(n)

1− ε if d = Θ(n1+ε), 0 < ε < 1

0 if d = Θ(n2)

[1] A. Barg and A. Mazumdar, “Codes in Permutations and Error Correction for Rank Modulation,” in Proc. IEEE

International Symposium on Information Theory (ISIT), pp. 854–858, June 2010.

63 / 85

Further reading

A. Mazumdar, A. Barg and G. Zemor, “Constructions of Rank
Modulation Codes,” in Proc. IEEE International Symposium on
Information Theory (ISIT), 2011.

A. Jiang, M. Schwartz and J. Bruck, “Correcting charge-constrained
errors in the rank modulation scheme,” in IEEE Trans. Information
Theory, May 2010.

F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the Ulam metric,” in IEEE Trans. Information
Theory, May 2013.

I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” in IEEE Trans. Information Theory, June 2010.

Fan Zhang, Henry Pfister, and A. Jiang, “LDPC codes for rank
modulation in flash memories,” in ISIT 2010.

R. Heymann, J. H. Weber, T. G. Swart, and H. C. Ferreira,
“Concatenated permutation block codes based on set partitioning for
substitution and deletion error-control,” in ITW 2013.

64 / 85

Further reading

H. Zhou, A. Jiang and J. Bruck, “Systematic error-correcting codes for
rank modulation,” in ISIT 2012.

H. Zhou, A. Jiang and J. Bruck, “Error-correcting schemes with dynamic
thresholds in nonvolatile memories,” in ISIT 2011.

E. En Gad, A. Jiang and J. Bruck, “Trade-offs between instantaneous and
total capacity in multi-cell flash memories,” in ISIT 2012.

Q. Li, “Compressed rank modulation,” in Allerton 2012.

F. Sala, R. Gabrys, and L. Dolecek, “Dynamic threshold schemes for
multi-level non-volatile memories,” in IEEE Trans. Communications, July
2013.

S. Buzaglo, E. Yaakobi, J. Bruck, and T. Etzion, “Error-correcting codes
for multipermutations,” in ISIT 2013.

F. Farnoud and O. Milenkovic, “Multipermutation codes in the Ulam
Metric for nonvolatile memories,” in JSAC special issue on
Communication Methodologies for the Next-generation Storage Systems,
May 2014.

65 / 85

Further reading

E. En Gad, E. Yaakobi, A. Jiang and J. Bruck, “Rank-modulation
rewriting codes for flash memories,” in ISIT 2013.

D. Slepian, “Permutation modulation,” in Proc. IEEE, Mar. 1965.

I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,” Inf.
Control, 1979.

A. J. Han Vinck and H. C. Ferreira, “Permutation trellis-codes,” in ISIT
2001.

C. J. Colbourn, T. Klove, and A. C. H. Ling, “Permutation arrays for
powerline communication and mutually orthogonal Latin squares,” in
IEEE Trans. Information Theory, June 2004.

I. Tamo and M. Schwartz, “On the labeling problem of permutation
group codes under the infinity metric,” in IEEE Trans. Information
Theory, Oct. 2012.

66 / 85

Further Reading

M. Schwartz and I. Tamo, “Optimal permutation anticodes with the
infinity norm via permanents of (0, 1)-matrices,” in Journal of
Combinatorial Theory, 2011.

T. Klove, T. Lin, S. Tsai and W. Tzeng, “Permutation arrays under the
Chebyshev distance,” in IEEE Trans. Information Theory, June 2010.

Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for rank
modulation,” in IEEE Trans. Information Theory, Aug. 2012.

T. Wadayama and M. Hagiwara, “LP-decodable permutation codes based
on linearly constrained permutation matrices,” in IEEE Trans.
Information Theory, Aug. 2012.

M. Schwartz, “Quasi-cross lattice tilings with applications to flash
memory,” in IEEE Trans. Information Theory, Apr. 2012.

M. Qin, A. Jiang and P. H. Siegel, “Parallel programming of rank
modulation,” in ISIT 2013.

67 / 85

68 / 85

What is the right number of levels?

Performance of SLC, MLC and TLC:

SLC: 2 levels, endurance of ∼ 105 Program/Erase cycles.

MLC: 4 levels, endurance of ∼ 104 Program/Erase cycles.

TLC: 8 levels, endurance of ∼ 103 Program/Erase cycles.

Question: Is there a way to adaptively choose the number of levels,
based on the cells’ quality and random programming performance?

69 / 85

Variable Level Cell (VLC) [1]

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

[1] A. Jiang, H. Zhou and J. Bruck, Variable-level cells for nonvolatile memories, in Proc. ISIT, pp. 2489-2493,

2011.

70 / 85

Existing Technology: Fixed Thresholds and Levels

level 0 level 1 level 2 level 3 level 4 level 5 level 6 level 7

Cell-level Distribution of TLC
T1 T2 T3 T4 T5 T6 T7

Cell-level Distribution of TLC

71 / 85

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0

Cell-level Distribution of VLC

72 / 85

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC

73 / 85

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC

74 / 85

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2

75 / 85

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1 level 2

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2

76 / 85

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

level 0 level 1 level 2

Cell-level Distribution of TLC
T1

Cell-level Distribution of VLC
T2 T3

77 / 85

Variable Level Cell (VLC)

Main Idea of VLC:

Set thresholds dynamically.

Do not fix the number of levels in advance.

0 1 2 3 4 5 6 7 8 9

T8 T9
Cell-level Distribution of VLC

78 / 85

Variable Level Cell (VLC)

VLC is more adaptive compared to current schemes.

Programming is more robust to

Cell quality degradation/variance;

Probabilistic charge injection behavior.

Multiple levels can be programmed in parallel for higher speed.

79 / 85

Storing Data in VLC

How to store data? One solution for one-write storage:

level 0

Cell-level Distribution of VLC

n cells

80 / 85

Storing Data in VLC

Level 1 can store nH(x1) bits.

Reading these nH(x1) bits will require two threshold comparisons.

level 0 level 1

Cell-level Distribution of VLC

n(1-x1) cells

nx1 cells

81 / 85

Storing Data in VLC

Level 2 can store n(1− x1)H(x2) bits.

Reading these n(1− x1)H(x2) bits will require one additional
threshold comparison.

level 0 level 1 level 2

Cell-level Distribution of VLC

n(1-x1)(1-x2) cells

nx1 cells
n(1-x1)x2 cells

82 / 85

Capacity of VLC

Assume

Level 1 can be programmed with probability p1;

Level 2 can be programmed with probability p1p2;

Level 3 can be programmed with probability p1p2p3;

· · · ;
Level q can be programmed with probability p1p2 · · · pq,
where q is the maximum possible level number.

83 / 85

Capacity of VLC

Define A1,A2, · · · ,Aq−1 recursively:

Let Aq−1 = 2pq−1 ;

For i = q − 2, q − 3, · · · , 1, let Ai = (1 + Ai+1)pi .

Theorem

The capacity (expected value) of VLC is

CVLC = log2 A1

bits per cell.

For the capacity region of rewriting codes, see:
[1] A. Jiang, H. Zhou and J. Bruck, Variable-level cells for nonvolatile memories, in Proc. ISIT, pp. 2489-2493,

2011.

84 / 85

85 / 85

