

Overcoming Challenges in 3D Architecture Memory Production

Sundar Narayanan

Vice President, Technology Development

- 3D-Flash will replace 2D by 2016
 - All leading NAND players support this trend
- Planar NAND is being replaced because the market requires:
 - Higher density
 - Higher capacity

Any 3D technology that replaces 2D has to meet the following requirements:

Performance of the cell should be comparable or better

A significant increase in density

Lower cost/ bit than 2D

3D Flash – NAND Challenges

Comparable to current 2D cell which is electron based – **MLC is more challenging**

- Vertical etch technology is doable but comes at a cost
 - New etch/Cleans development and equipment
 - Fab cost ~ 2x

 Stacking solves this problem again at a cost

3D RRAM – A Simple Solution

Process Implementation

Better Cell Performance

- Simple process
- Use existing toolset
- Stacking architecture is built one layer at a time
- Filament based instead of electron based
- Ability to drive many cells with a single transistor
- Lower I_{OFF} with smaller geometries
- Higher I_{ON}/I_{OFF} enables MLC

Monolithic integration of RRAM on CMOS

- Thermal budget requirements met for
 - RRAM on CMOS
 - RRAM on RRAM
- Minimal area overhead from the access transistors

- Simple approach to control cell parameters using 50nm node
- CD controls I_{OFF} and T_{SL} (~10nm) the I_{ON}
- Cell proven at 8nm CD

Start Simple – Adding1st RRAM Layer

	VS. CMOS 1P9M	vs.	2 111R RRAM 1P9M
Attribute	Logic CMOS	E-flash	RRAM
Masks	31	>37 (31 + at least 6)	33 (31 + 2) 1. RRAM BE Via . 2. RRAM Metal collar
Steps	~200	~ 240	~208

Provides a solution that is far superior

Imagine the possibilities!

3D RRAM Architecture – Multiple layers

Attribute (Impact)	Planar NAND	3D-NAND	3D-RRAM
Transistor Size (Die Size)	High Voltage ~25 V	High Voltage ~25 V	Low Voltage (<3 V)
Density Scaling (Die Size, Yield)	63 serial Transistors Below 16nm not possible	Scales Vertically to 26-32 layers Equivalent to 55nm node	Scales as CMOS logic scales with no restrictions to sub 10nm 4-8 layers equivalent to 20nm node
Via Angle Complexity (Die Size, Yield)	Low	Very high	Low
Added Cost (Fab, Materials)	None	~2x Fab cost 20% tool cost	~4% per layer No 3D etch tool cost

- 3D Flash will replace 2D Flash to meet the market demand for density and capacity
- 3D-RRAM provides a simple solution that is stackable, scalable and provides a Multi Level Cell with monolithic CMOS integration
- Logic fabs can covert to Memory fabs with minimal overhead and implement 3D memory using RRAM

