

FPGAs in Flash Controller Applications and More

David McIntyre

Altera Corp. dmcintyr@altera.com

Flash Memory Summit 2014 Session 102-C Tues August 5, 9:45am

- FPGAs and Data Centers
- Emerging Memory Types
- Applications I
- Channel I/O Considerations
- Applications II
- Flashing Forward!

Data Center Trends

- Network Convergence
 - PCIe in the rack
 - Low latency 10GbE between racks
 - Switch aggregation

Algorithmic Acceleration

- Big Data
- Cloud computing applications
 - Financial, Government, Scientific
- Tiered Storage- Server Caching
 - Application specific caching
 - Performance (speed and width, latency)
 - Non volatile memory types beyond Flash

Flash Memory FPGA Utilization across Data Centers

Point and SOC Solutions

- Application Acceleration
- Embedded Processing
- I/O Protocol Support
- Memory Control
- Compression
- Security
- Port Aggregation & Provisioning

TEST & MEASUREMENT

Application Acceleration

Processing Options

Technology scaling favors programmability and parallelism

Altera FPGA Technology – Hardware Programming

8

OpenCL Overview

- Open Computing Language
 - Software-centric
 - C/C++ API for host program
 - OpenCL C (C99-based) for acceleration device
 - Unified design methodology
 - CPU offload
 - Memory Access
 - Parallelism
 - Vectorizaton
 - Developed and published by
 - http://www.khronos.org

- Monte-Carlo simulation
 - Heston Model

 $dS_{t} = \mu S_{t} dt + \sqrt{\nu_{t}} S_{t} dW_{t}^{S}$ $d\nu_{t} = \kappa (\theta - \nu_{t}) dt + \xi \sqrt{\nu_{t}} dW_{t}^{v}$

- ND Range
 - Assets x Paths (64x100000)
- Advantage FPGA
 - Complex Control Flow
- Results

	Power (W)	Performance (Msims/s)	Msims/W
W3690 Xeon Processor	130	32	0.25
nVidia Tesla C2075	225	63	0.28
PCIe385 D5 Accelerator	23	170	7.40

Same compression ratio

12X better performance/Watt

Gzip Implementation

TABLE I: Comparison between our OpenCL FPGA and the best CPU implementation of Gzip.

	Performance	Performance/Watt	Compression Ratio
OpenCL FPGA	2.71 GB/s	111 MB/J	2.17×
Intel Gzip	338 MB/s	9.26 MB/J	2.18×
Gap	8.2× faster	$12 \times \text{better}$	on par

Storage Trends

Flash Memory Volatile vs NVM Market Share

Figure 2. Total Memory Revenue Share by Memory Type, Worldwide, 1996-2015

Source: Gartner

Revenue Forecast

Figure 7. Revenue Forecast for Emerging Memory Technologies

Source: Gartner

Flash Cache Challenges & Evolution

Ongoing Challenges

Memory

SUMMIT

- Error correction costs increasing
- Limited endurance (lifetime writes)
- Slow write speed
- SATA/SAS SSD interface is slow
- Storage over PCIe
 - Faster BW projections
 - SATA Express
 - NVM Express
 - SCSI Express
- Emerging flash technologies
 - MRAM (Magneto Resistive)
 - PCM (Phase Change)
 - RRAM (Resistive)
 - NRAM (Carbon Nanotube)

1Y

1X

SLC

2Y

Process Geometry

2X

9

Tiered Storage, Then

Seminole Indian Storage

Tiered Storage, Now

FlashMemory Emerging Memory Technologies

Spin-Torque MRAM – Next generation MRAM

Current generation MRAM uses a magnetic field for switching Limits scaling due to constant magnetic field

Next generation MRAM enables scaling to Gb densities Everspin on track to deliver industry's first ST-MRAM

- HDD leveraged as capacity optimized data storage
 - Benefits : Lowest cost per GB/TB for data storage
 - · Challenges: Random access, active power & power fail
- NAND SSD leveraged as performance optimized storage
 - Benefits : More IOPS, reduced latency & less overall power
 - Challenges: Write latency & variability, endurance, power fail
- ST-MRAM leveraged as non-volatile buffer/cache for storage
 - Benefits : DRAM like access, unlimited endurance & power fail
 - Challenges: New storage architecture, density & cost scaling

Flash Memory Summit 2014 Santa Clara, CA

Hybrid Memory Cube (HMC)

HMC technology basics

- Ultra high performance, multi-bank DRAM memory
- DRAM die stacked using state-of-the-art 3D process
- Built-in memory controller with logic base die

Parameters	Specification
Link	4
Speed	10,12.5,15 Gbps
Density	2GB, 4GB
Vaults	16
Banks	128, 256
DRAM B/W	160 GB/s (1.2 Tbps)
Vault B/W	10 GB/s (80 Gb/s)

Unparalleled gains with HMC

- Maximum DRAM bandwidth of up to 160 GB/s
- Four links running at 15 Gbps offering nearly 1 T bps raw interface bandwidth
- Up to 4GB density (storage) capacity, low PHY power (pj/bit)
- Best in class RAS feature set

Memory Categories

Figure 1. Categories of Memory (Charge Versus Resistivity)

Key: DRAM = dynamic RAM EEPROM = electrically erasable programmable ROM EPROM = erasable programmable ROM FeRAM = ferroelectric RAM

MRAM = magnetoresistive RAM PRAM = phase-change RAM PSRAM = pseudostatic RAM SRAM = static RAM

Flash Memory

SUMMI

Figure 2. Comparison of Emerging Memory Technologies

Figure 2 shows a comparison of these emerging memory technologies. We compare the properties of most memory technologies in reading speed (x-axis), endurance (y-axis), cell size (size of the ball) and switching energy (color of the ball).

Source: Gartner

We estimate the comparative capability of these emerging memories in four areas:

- Scalability: Memristor memory > PCM > STT-MRAM
- Read Speed: Memristor memory ~ STT-MRAM > PCM
- Feature size (cost): STT-MRAM > PCM > Memristor memory

SUMMIT

Memory Comparisons- Performance

Figure 3. Memory Comparison

Flash Memory

	SST-MRAM	DRAM	NAND	SRAM	PCM	FRAM	MRAM
Status	Prototype	Product	Product	Product	Product	Product	Product
Cell Element	1T1MTJ	1T1C	1T	6T	1T1R	1T1C	1(2)T1R
Non-Volatile	Yes	No	Yes	No	Yes	Yes	Yes
Read Speed	***	***	*	***	**	*	***
Write Speed	**	***	**	***	*	**	***
Power Consumption	***	*	**	*	**	***	*
Endurance	***	***	*	***	**	***	***
Scalability	***	*	**	*	**	*	*
MLC Capability	Yes	No	Yes	No	Yes	No	No
New Material	Yes	No	No	No	Yes	Yes	Yes
Vendors	Hynix	Elpida Memory	Intel	Cypress	Micron	Ramtron	Crocus Technology
	IBM	Hynix	Micron	GSI	Samsung	Texas Instruments	Everspin Technologies
	Renesas	Micron	Samsung	Renesas			
	Samsung	Nanya	SanDisk	Samsung			
	TDK	Samsung	Toshiba				
	Toshiba						

C = capacitor, FRAM = ferroelectric RAM, MLC = multilevel cell, MRAM = magnetoresistive RAM, MTJ = magnetic tunnel junction, PCM = phase-change memory, R = resistor, SRAM = static RAM, STT-MRAM = spin-transfer torque magnetic random-access memory, T = transistor

Key: 3 stars = Excellent; 2 stars = Good; 1 star = Reasonable. Red coloring signifies the best in each category.

Source: Gartner

Migration Timeline- Cost

Figure 6. Migration Timeline for Emerging Memory Technologies

Geometry (nm)

Memory

SUMMIT

Fla

Source: Gartner

5MB in Flight!

Convergence.

Data Center Applications- Servers

Application	Usage Examples
Flash SSD	PCIe to ONFI bridging, Flash Control
	Algorithm acceleration for vertical markets
Bridge Plus	Interface bridging with IP function, e.g. compression and encryption, Dedupe
I/O Virtualization (10GbE and PCIe)	ASIC alternative; low cost with flexibility
Co-ASIC Mainframe	Features enhancement
Management (BMC, KVM) Blade Server	IP Flexibility supported with low power

Data Center Applications- Storage

Application	Usage Examples
Flash Cache/SSD	ONFI bridging and RAID adaptor NV DIMM backup, RAID for Flash
RAID Bridging	PCIe Gen 3 x8 best of class signal integrity
Bridge Plus	Interface bridging with IP function
ASIC Replacement	Lower cost development with flexibility

Hybrid RAID System

- Persistent DRAM and Flash Caches

Hybrid RAID System - PCIe Switch Centric

Flash Controller Design Considerations

- Uncertainty Favors PLDs for Flash Control Solutions
- Flash Challenges Continue
 - Data loss, slow writes, wear leveling, write amplification, RAID
- Many Performance Options
 - Write back cache, queuing, interleaving, striping, over provisioning
- Many Flash Cache Opportunities
 - Server, blade and appliance

Emerging memory types

- ONFI 4.0, Toggle Mode 2.x
- PCM, MRAM
- DDR4

Controller Performance Options

- Write back cache, queuing, interleaving, striping
- ECC levels
 - BCH, LDPC, Hybrid
- FTL location- Host or companion
- Data transfer interface support
 - PCI Express, SAS/SATA, FC, IB

Typical SSD Controller Architecture

Flash Memory

Mobiveil NVMe SSDC Solution

NVM EXPRESS

Fla

Memory

 \gg

SUMMIT

Error Correction Overview

Driving Factors for New ECC

- Increasing Bit errors in NAND Flash
- Soft error occurrences
- Decrease in write cycles
- RS, BCH overhead for data and spare area
- Increase use of Metadata in file systems
- Correction Overhead
- Gate count
- Requirement for no data loss

Comparing ECC Solutions

Features	BCH	LDPC
Gate Count	High	Mid
Latency	Low	Medium
Tuneablity	low	high
Soft Data	no	high
Data Overhead	high	low

ECC- Block Hamming

- DRAM variant
- Applicable to the flash page block sizes
- Smaller blocks used as error rates increased

Reed Solomon

- CD-ROM basis, stronger than Hamming
- Split correction blocks split into 9 bit symbols
- Good for clumped errors

BCH

- Better supports MLC >8bits correction block
- BCH ECC increasing with correction block sizes

Flash Memory Summit 2014 Santa Clara, CA

- Addresses higher BER across process node curve
- Good for TLC
- FPGA parallelism of Parity Matrix allows for faster processing of algorithm

 $\mathbf{c}_1 \, \mathbf{c}_2 \, \mathbf{c}_3 \, \mathbf{c}_4 \, \mathbf{c}_5 \, \mathbf{c}_6 \, \mathbf{c}_7 \, \mathbf{c}_8 \, \mathbf{c}_9 \mathbf{c}_{10} \mathbf{c}_{11} \mathbf{c}_{12}$

 0
 0
 1
 0
 1
 1
 1
 0
 0
 0
 1

 1
 1
 0
 0
 1
 1
 0
 0
 0
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1

 $c_{3} \oplus c_{6} \oplus c_{7} \oplus c_{8} = 0$ $c_{1} \oplus c_{2} \oplus c_{5} \oplus c_{12} = 0$ $c_{4} \oplus c_{9} \oplus c_{10} \oplus c_{11} = 0$ $c_{2} \oplus c_{6} \oplus c_{7} \oplus c_{10} = 0$ $c_{1} \oplus c_{3} \oplus c_{8} \oplus c_{11} = 0$ $c_{4} \oplus c_{5} \oplus c_{9} \oplus c_{12} = 0$ $c_{1} \oplus c_{4} \oplus c_{5} \oplus c_{7} = 0$ $c_{6} \oplus c_{8} \oplus c_{11} \oplus c_{12} = 0$ $c_{2} \oplus c_{3} \oplus c_{9} \oplus c_{10} = 0$

Flash Memory Flash Controller Support

IP	ю	Speed	Logic Density	Comments
ONFI 3.0	40 pins/ch	400 MTps	5KLE/ch	NAND flash control, wear leveling, garbage collection
Toggle Mode 2.0	40 pins/ch	400 MTps	5KLE	Same
DDR3	72 bit	1066 MHz	10KLE	Flash control modes available for NVDIMM
PCM			5KLE	PCM- Pending production \$
MRAM			5KLE	MRAM- Persistent memory controller (Altera based)
BCH			<10KLE	Reference design
PCIe	G3x8	64Gbps	HIP	Flash Cache

Target Application: Enterprise Tier-1 Storage: Databases and Virtualization

Function	Solution Rqts	Target Product	IP Rqts
Flash Control	-ONFI 2.X/3.0 -Toggle Mode 2.0 - Multi flash load/ch - 40 GPIO/ch	Arria V (28nm)	 Flash Controller (bad block mgt and wear leveling) Metadata & caching ECC BCH core
RAID Control	PCIe Gen 3	Arria 10 (20nm)	 Flash-specific RAID Switching and aggregation
Power Mgt		Enpirion	

<u>Target Application:</u> Embedded PCIe storage for flash cache and scale-out computing

PCIe: Gen 3x8

FPGA controller provides flexiblity to integrate multiple complex functions and adapt to changing interfaces & APIs.

Function	Solution Rqts	Target Product	IP Rqts
Flash Control	-ONFI 2.X/3.0 -Toggle Mode 2.0 - Multi flash load/ch -40 GPIO/ch -PCIe Gen 3 x8 -Low power & cooling	Arria V Arria 10	 Flash Controller (bad block mgt and wear leveling) Flash RAID Cache controller BCH core PCIe config < 100msec Host interface/APIs

Flash Cache Controller Examples

- Multi Channel Controller
 - Single to multi Flash channel capability
 - Basic NAND
 development platform
 - Provides High Speed ONFI & Toggle NAND PHY
 - ECC of 8 and 15 bits of error correction
- Single Channel Controller

PCIe to RAID controller

Embedded storage for flash cache and high performance computing

Function	Solution Rqts	Target Product	IP Rqts	IP Partner
RAID Control	-ONFI 2.X/3.0 -Toggle Mode 2.0 - Multi flash load/ch -40 GPIO/ch -PCIe Gen 3 -6Gb SAS/SATA	Arria 10	Flash Controller RAID PCIe config < 100msec 6Gb SAS/SATA	SLS CAST Altera Reference Design (3Q12) CEVA/Inteliprop

Memory Lookup and Cache

Embedded Memory search and cache for high performance computing

Functio n	Solution Rqts	Target Product	IP Rqts	IP Partner
Memory Control	-ONFI 2.X/3.0 -Toggle Mode 2.0 - Multi flash load/ch -40 GPIO/ch	Arria V	Flash Controller	SLS CAST
	-PCIe Gen 2 x8/Gen3 x8	Arria 10	6Gb SAS/SATA	
	-Interlaken		"Look-aside variant"	

Development Platforms

Stratrix/Arria FPGA

Introspect I/O Tester

Everspin 64MB DIMM

Cyclone Development Board

Gidel ProceV Board

Micron Daughter Card

System IO Considerations

System Application Requirements

- Performance- bandwidth
- IO network
- Memory
- Latency

PCIe Mode	Thruput (GT/s per lane)	Production
Gen 2	5.0	Now
Gen 3	8.0	Now
Gen 4	16.0	2016

Note:

1. LMI: Local Management Interface

2. DPRIO: Dynamic Partial Reconfigurable Input/Output

Hardened IP (HIP) Advantages

- Resource savings of 8K to 30K logic elements (LEs) per hard IP instance, depending on the initial core configuration mode
- Embedded memory buffers included in the hard IP
- Pre-verified, protocol-compliant complex IP
- Shorter design and compile times with timing closed block
- Substantial power savings relative to a soft IP core with equivalent functionality

- Scalable host controller interface for PCIe-based solid state drives
- Optimized command issue and completion path
- Benefits
- Software driver standardization
- Direct access to flash
- Higher IOPS and MB/s
- Lower latency
- Reduced Power Consumption

Intel QPI

Up to (2) full width QPI 1.1

• 6.4, 8.0 Gbps

Designed for QPI Electricals

- Common Mode Voltage
- Lane detection on die

Chip to chip interconnectivity

- Fast HP 28nm. process
- Hard PHY + Upper Layers Option
 - Decrease latency, power, & fpga logic
 - Use "Embedded Hardcopy Blocks"
 - Improve throughput by 75+%
 - 6-8GB/s data payload each way

Note: Routing Layer not used

Industry Interface Convergence

- Flash Controllers manage SAS/SATA SSD interfaces
- 12Gbps SAS support required for enterprise drives
- FPGA transceivers need to support electrical performance and OOB signaling

SAS Cable Connection to SAS peer (via connector mezzanine board)

FPGA Flash Applications- Part Two

Flash Memory Summit 2014 Santa Clara, CA

Memory DRAM Cache Backup

- Data Center server power outages continue
- Read/Write Consequences
 - Data Loss
 - Undetected errors in host application
- NVDIMM designs protect system integrity but...

Battery Limitations	Issue		
Shelf Life	One year max or 500 cycles		
Disposal and Handling	Hazardous Waste Management		
Data Storage Capacity	Up to 72 hours		
Down Time	Charge Time up to 6 hours		
Replacement Cost	Field Time and Materials		

The Perfect Storm

Technology Enablers

- Super Capacitors are production worthy
- Flash memory costs continue to decline
- **FPGA** technology meeting power/performance/cost

Memory Backup

Nonvolatile DIMM for data recovery backup and restore

Benefits vs Batteries

Attribute	Ultracapacitors	Batteries Hazardous disposal	
Environmental	Green		
Shelf Life	Years	Months	
Charge Time	Seconds	Hours	
Conditioning	None	Initial and periodic	
Weight	Lighter	Heavier 60°C max	
Operating Temp	Up to 70°C		
Operating Life	Up to 10 years	1 to 3 years	
Maintenance	None	Replace very 1-2 years	

Component/Circuit	Function	Component Benefit
Cyclone V FPGA	Circuit management and control	Low power (28nm), DDR3 memory, and ONFI Flash control
High Speed Switching FETs	DDR3 Switch Signaling	Switching with noise suppression
ONFI NAND Flash	Memory Cache	2-8GB, matches DRAM density
DDR3 DRAM	Memory Source	2-8GB
Charging Circuit	Low Power, Green Energy Supply	Ultra Capacitor Bank with optional battery supply
Processor	Power Good Signal	Circuit toggle

NVDIMM Controller Architecture

Nanosecond-class MRAM Storage

•

H	500x Performance			
		NAND	MRAM	
A A	Density	64Gb	1Gb	
CERT INT	Latency	50us	45ns	
	4k Write IOPS	800	400k	all and a start
61	Cost/GB	1	50	En la state
NAND SSD	at only	50x Co	st/GB	MRAM SSD

Flashing Foward

- FPGAs are a great technology option for Data Centers
 - Networking: Port aggregation
 - Compute: Application Acceleration
 - Storage: Controllers for non volatile memories
- All development phases supported
 - Prototyping
 - Production
 - Test Validation
 - Upgrades

