Extending Flash Memory Through Adaptive Parameter Tuning Conor Ryan CTO - Software Conor.Ryan@NVMdurance.com ## Take Home Messages - ► 25x increase in endurance on 1X nm devices - Machine learning software fully characterizes NAND chips before they go into a product - Lightweight software running on the product autonomically manages its health, using machine learning knowledge - ▶ 40-bit ECC gives 10x increase; 120-bit ECC gives 25x increase - Uses the least stress possible - Raw flash runs faster ## At a glance - ► NVMdurance Pathfinder - ▶ Delivers most of the endurance gain - ► Suite of Machine Learning Algorithms - Determines sets of optimal register values for NAND chips before they go into a product - "Heavy lifting" done before shipping - NVMdurance Navigator - Exploits endurance gains enabled by Pathfinder - ▶ Autonomic system, runs on the controller - Chooses register values at run-time from those discovered by Pathfinder #### The Problem Number of P/E Cycles ## Solution #### Solution Force ## Solution #### Solution with variable ECC #### Solution with variable ECC Number of P/E Cycles #### The Not-So-Secret Sauce - Reduce dimensionality of the problem - ► Reduce the number of independent variables - ▶ Understand the silicon; vary as few registers as possible - ► Guide the search - ▶ Be sensible, if not insightful - Test only what has to be tested - Or at least know what NOT to test - …this is still an astronomically difficult problem! #### The Secret Sauce - ► Plot "safe" paths through massively highly dimensional space - ► Each register adds two dimensions (more than 50 write registers!) - ► Tune paths on the fly - ▶ Not all blocks degrade at the same rate - Retention may impact various blocks differently - Anticipate health issues before they happen - ▶ Treat the flash as though it is a dynamic, living thing #### Start Imagine the lifetime of a device to be a journey through space... ... touch an "asteroid" and we have unrecoverable data Start # Flash Memory NVM durance Pathfinder Start **Destination** NVMdurance Pathfinder determines sets of optimal register values (analogous to safe paths through the asteroid belt) for NAND chips before they go into a product **Destination** **Asteroid Belt** Live on device, NVMdurance Navigator chooses which path through the space to use, based on the "health" of the device. **Destination** **Asteroid Belt** Live on device, NVMdurance Navigator chooses which path through the space to use, based on the "health" of the device. **Destination** **Asteroid Belt** **Destination** #### **Asteroid Belt** **Destination** **Asteroid Belt** ## NVMdurance system #### Machine Learning Parameter Discovery NVMdurance Pathfinder: Discover routes through multidimensional space such that every parameter set passes retention for that point of life (by fully characterizing NAND chips before they go into a product) Autonomic (runs live on the SSD controller) NVMdurance Navigator: Observes deterioration of the SSD; chooses when to change parameters (using the knowledge delivered by Pathfinder) ## Stage - Sets of Write register values for that time in life - ▶ 30-60 write registers, e.g. start voltage, step size, MSB, LSB, odd, even, etc. - ▶ More registers means more control, but larger search space ## Stage - Sets of Write register values for that time in life - ▶ 30-60 write registers, e.g. start voltage, step size, MSB, LSB, odd, even, etc. Early Life Mid Life Late Life ## Stage Each stage has multiple waypoints (each a set of read register values) to guide it to the next stage ▶ Often only one set in early life - no read retry! ► First stage often lasts longer than default! ► Never more than eight waypoints # Waypoints - More waypoints required later in life - ► Higher wear uncovers higher variability Early Life Mid Life #### Lifetime - NVMdurance Pathfinder (machine learning offline) - ► Automatically discovers and proves viability of stages - ► Each stage passes retention test P/E Cycle Count as Multiple of Default Rating #### Lifetime - NVMdurance Navigator (run time) - Runs on controller (autonomic) - Monitors "Health" of devices - ▶ Determines when to progress to next stage - ► Chooses which waypoint to use during each stage P/E Cycle Count as Multiple of Default Rating ## Increasing ECC - System can tolerate higher BER - Stages last longer - Weaker stages possible earlier in life - ► NVMdurance enables a truly variable/adaptive ECC P/E Cycle Count as Multiple of Default Rating # One approach - many use cases P/E Cycle Count as Multiple of Default Rating (40-bit ECC) P/E Cycle Count as Multiple of Default Rating (120-bit ECC) 15 25 # **Experiments** ### Target Device | Device | 1X nm | |--|----------------------------------| | ECC | Up to 40 bits per sector | | Retention | 12 months | | Baseline Endurance | 1 | | Intrinsic Endurance (3 months retention) | 1.8x longer than rated endurance | ### Summary | Number of stages | 8 | |---------------------------------|-------------------------------------| | Stage length | 1x - 2x longer than rated endurance | | Retention | 3 months | | ECC | Up to 40 bits per sector | | Minimum Window Stress (stage 1) | 45% | | Approximately equal stress | Stage 5 | | Maximum Window Stress (stage 8) | 120% | | Maximum P/E cycles | 10x longer than rated endurance | P/E Cycle Count as Multiple of Default/Rating #### P/E Cycle Time & Write Stress Vs P/E Cycles Default lifetime, normalized to one #### P/E Cycle Time & Write Stress Vs P/E Cycles Initial write stress starts at 45% of default Write stress slowly increases Write stress exceeds default level 10x increase in endurance #### P/E Cycle Time & Write Stress Vs P/E Cycles P/E cycle time as % of default; never exceeds default. Stages get longer as ECC increases 25x improvement in endurance with the same retention! Initial write stress starts at 25% of default 53 Write stress increases more slowly Write stress exceeds default level #### P/E Cycle Time & Write Stress Vs P/E Cycles P/E cycle time as % of default; never exceeds default. #### Final Results | Number of stages | 8 | |---------------------------------|---------------------------------------| | Stage length | 1.2x - 7x longer than rated endurance | | Retention | 3 months | | ECC | Up to 120 bits per sector | | Minimum Window Stress (stage 1) | 25% | | Approximately equal stress | Stage 5 | | Maximum Window Stress (stage 8) | 120% | | Maximum P/E Cycles | 25x longer than rated endurance | ## Results Summary - ≥ 25-fold increase in endurance on 1X nm - ▶ 10-fold increase on 1X with 40-bit ECC - ▶ We avoid the problem of live optimization of parameters - ► Most work done before flash is put in product - ► NVMdurance Navigator can predict imminent failure - ▶ Our "health" measure is very precise - ► P/E operations run faster than defaults - ► Results proven with current generation devices from multiple manufacturers #### Conclusion - Industry leading endurance gains - NVMdurance's technology is synergistic to existing flash controller technology - Machine-learning software fully characterizes NAND chips before they go into a product - ► Lightweight software running on the product autonomically manages its health, using that knowledge Stop by and see us at booth #921 Conor. Ryan@NVMdurance.com