

Accelerating Data Centers Using NVMe and CUDA

Stephen Bates, PhD Technical Director, CSTO, PMC-Sierra

- Donard is a PMC CTO project that leverages NVM Express (NVMe) to accelerate data center applications
- Uses NVMe and (Remote) Direct Memory Access to enable the "Trifecta" of compute, network and storage PCIe devices
- Builds on work done by Nvidia, Mellanox and others

The Problem: x86 Status Quo Low parallelism = CPU / Memory / fabric saturation

The Solution: Donard

Pre-process algorithms in the data path

- We want to enable the Trifecta on a PCIe fabric.
- This work leverages NVMe to enable two edges of this Trifecta.
- Others have worked on other arms (see next slide).

- NVM Express (NVMe) provides a consistent, open-source interface into PCIe storage devices.
- An NVMe driver has been part of both Linux and Windows Servers for quite some time now.
- NVMe is extendible and is the focus of optimization within kernel.org¹.
- Using NVMe makes Donard much more scalable and amenable to community development.
- The work in this paper should be applicable to any NVMe compliant drive.

¹http://kernelnewbies.org/Linux_3.13#head-3e5f0c2bcebc98efd197e3036dd814eadd62839c

Storage->Compute

- Built a Linux server running kernel 3.13
- Installed an NVMe SSD and a Nvidia Tesla K20c
- Modified the NVMe module in the kernel to add a new IOCTL that use DMA between SSD and the GPU card
- Used CUDA 6.0 Peer-To-Peer (p2p) APIs to enable the DMA
- Measured the impact of the new IOCTL on bandwidth and host DRAM utilization

Technique	Bandwidth ¹ (GB/s)	DRAM Utilization ²
Classical	1.9	5230.0
Donard (DMA)	2.5	1.0

¹ Bandwidth was measured on our server which had a very standard PCIe fabric using a total transfer size of GB. Tests run 10 times. Results may vary depending on your PCIe architecture.

² DRAM utilization estimated using the page fault counters in the x86 CPU. Normalized to Donard performance.

Memory Compute->Storage

- Similar IOCTL as previous slide with direction changed
- Had to resolve the file extents issue. Several options:
 - 1. Overwrite an existing file
 - 2. Create a file using existing OS constructs (slow)
 - Modify the file stats properties to allow uninitialized extents – possible security issue¹
- Measured the impact of the new IOCTL on bandwidth and host DRAM utilization
- Still trying to determine why DMA method is slower. Suspect issue with PCIe architecture in server

¹https://lwn.net/Articles/492959/

Technique	Bandwidth ¹ (GB/s)	DRAM Utilization ²
Classical	1.51	6012.0
Donard (DMA)	0.65	1.0

¹ Bandwidth was measured on our server which had a very standard PCIe fabric using a total transfer size of GB. Tests run 10 times. Results may vary depending on your PCIe architecture.

² DRAM utilization estimated using the page fault counters in the x86 CPU. Normalized to Donard performance.

- Data Centers (DC) are deploying flash in a direct attach model to aid in application acceleration.
- Although SATA is prevalent today many DCs see a shift to PCIe attached flash and like the idea of using NVMe.
- Some DC customers are offloading applications to heterogeneous compute platforms such as GPU cards and FPGA cards¹.
- Donard assists in this offload and also reduces the burden on the host processor and host DRAM.

Donard DC Application - Haystack

- We wrote a program to search for the PMC logo in a large (10,000+) image database
- Performance improved as we migrated to DMA on a SSD+GPU compared to a traditional solution
- Note it also moves the bottleneck from the host DRAM interface to the GPU
- Other applications might include sorting and write-caching

	HDD	SDD	
	Mpix/s	Mpix/s	Bottleneck
CPU	77.0	122.8	CPU
CUDA	95.1	312.5	DRAM
DONARD	N/A	534.2	GPU

- Determine reason for slow write performance from GPU into SSD
- Add RDMA capable NICs to the Donard platform and complete the "Trifecta;" this is work in progress
- Enable Donard within the community so others can benefit and contribute (GitHub?); already working with Steve Swanson's team at UCSD
- Work with the NVM Express standards body to incorporate some of the Donard ideas into NVMe

Thank You!Image: Constraint of the second sec

blog.pmcs.com @pmcsierra