SUMMIT

RocksDB

http://rocksdb.org/

Embedded Key-Value Store for Flash
and Faster Storage

Siying Dong
Database Engineering@ Facebook

sW&rory Overview

SUMMIT

RocksDB and its architecture
Example use case in facebook.
Why is RocksDB flash-friendly?
How to run benchmark

What is RocksDB

1["“§\>-

SUMMIT

« Key-Value persistent store

« Embedded

« Optimized for fast storage

* Optimized for server workloads

« Open-Source, builds on LevelDB code base,
written in C++

RocksDB API

1["“§\>-

SUMMIT

Keys and values are arbitrary byte arrays
Data are stored sorted by key

Update Operations: Put/Delete/Merge
Queries: Get/lterator

/
SUMMIT

Write Request

Read Regest

Santa Clara, CA
August 2014

RocksDB Architecture

Memory

Switch ‘

Persistent Storage

Switch ‘

Compaction

Write Path (1)

/
SUMMIT

Memory Persistent Storage
N\

’// \
\\ /

St ‘ Switch ‘

Compaction

Santa Clara, CA
August 2014

/
SUMMIT

Write Request

Santa Clara, CA
August 2014

Memory

Write Path (2)

Persistent Storage

P

-

Switch ‘

Switch ;

N
Flush ‘

Compaction

/
SUMMIT

Write Request

Santa Clara, CA
August 2014

Write Path (3)

Memory

-

Switch ‘

Persistent Storage

Switch ‘

Flush ‘

Compaction

Write Path (4)

/
SUMMIT

Memory Persistent Storage
S ‘ Switch ‘

Compaction

Santa Clara, CA
August 2014

Read Path

/
SUMMIT

Memory

Read Request <— Indexes and Bloom

Filters
cached in memory

A\

Persistent Storage

— -%
Santa Clara, CA Block Cache
August 2014

10

| 8 Example Use Case: Find all friends
wamm= Of user X who like Page Y

* Need to store liker-page mapping for fast look-
up.
« Choice one: put the mapping in memory
* Fast
* Need to keep more replicas than needed by queries
« Choice two: put the mapping on flash

» Slower, but still fast
* One replica can handle fewer queries
* Fewer hosts for one replica of data

Example Use Case: Find all friends
of user X who like page Y

List of users
(friends of X)

)i \‘

SUMMIT

List of users
who like Y

List of users
List of users who like Y

owned by the
shard

V\6:&% liker -> page

Santa Clara, CA mapping in Ro_cksDB.
MR Sharded by likers.

Example Use Case: Find all friends
of user X who like Page Y

RocksDB

Indexes and Bloom
Filters

Preload indexes for cached in memory

all files in memory == v
Block Cache

Read Request

Santa Clara, CA
August 2014

Example Use Case: Find all friends
of user X who like Page Y

RocksDB

Indexes and Bloom
Filters
cached in memory

Read Request

Use hash indexes To
reduce CPU

Block Cache

Santa Clara, CA
August 2014

Example Use Case: Find all friends
of user X who like Page Y

RocksDB

Indexes and Bloom

R R
ead Request Filters

cached in memory

Block Cache

Very small block cache to
save memory

Santa Clara, CA
August 2014

Example Use Case: Find all friends
of user X who like Page Y

RocksDB

Mostly Covered by
Bloom Filter

Indexes and Bloom

Read Request Filters

cached in memory

Block Cache

Santa Clara, CA
August 2014

>\ Why Is RocksDB Friendly to Flash
cularr | DEViCES?

Reason 1:

Tunable between device wear-out and
read latency

* Tunable compaction to trade-off
« Read Amplification
« Write Amplification
« Space Amplification

Compaction 1: compact to one file

= 4

« Write Amplification = 1000

Read Amplification = 2 or 1 using bloom
Space Amplification = 1.001

—......* Need Double Space for compaction

August 2014

.:‘i’ \\

SUMMIT

18

Compaction 2:
Leveled-Compaction

."i \\

/
SUMMIT

&

Level 1 } o Target 1GB

Level 3) ‘) Target 100 GB

Level 4) " Target 1000 GB

« Read Amplification: number of levels or 1 (using bloom)
« Write Amplification: 10 * number of levels
« Space Amplification: 1.1

Santa Clara, CA
August 2014

19

W& Compaction 3:
s © “Universal Compaction”

[
4GB 8GB

|}
[

'..-------------~
(]
)

.--------------'

L
¢
-_— @ ...

512MB 1GB 2GB 16GB 32GB

« Write Amplification <= number of files
 Read Amplification: number of files or 1 (using bloom)
« Space Amplification: 2

Santa Clara, CA

wasoi o Need Double Space for compaction 20

¢ Comparing Compaction
semmie: (1 TB DB, 1GB flush size)

Get() Range Prefixed Write- Space- Double

Read- Scan scan Amp Amp Space
Amp Read- Read- Issue?
Amp Amp
Compaction 1 1000 Yes
(to one file)
Compaction 2 1 5 <=5 40
(“Leve|ed”) (using (using bloom)
bloom)
Compaction 3 1 11 <=11 2 Yes
(“Universa|”) (using (using bloom)
bloom)

* Write-Amp: Write Amplification
 Read-Amp: Read Amplification
e e o8 « Space-Amp: Space Amplification

August 2014

Why I1s RocksDB Friendly to Flash

e Devices? Reason 2. Pluggable

/.
SUMMIT

Pluggable

MemTable Memory Persistent Storage Allow different files on
—— \ - . different storages
Switch ; Switch ;

- . Plugg
Flush |

Pluggable File Format

able Compaction

[Compaction]
Santa Clara, CA

August 2014 22

E Why I1s RocksDB Friendly to Flash
3’ 'N‘i.\‘ D .)

summiT evices”

Reason 3: Optimized for fast storage

* Lock-free reads
* Optimize to reduce CPU usage

.1,' "£§\.g

SUMMIT

Benchmarking RocksDB

Use db bench
Our benchmark setting and results:

Find all information on http://rocksdb.org/
Benchmark RocksDB on your devices!

https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks

Take-Away

1l "(§\--

SUMMIT

RocksDB and its architecture
Example use case in facebook.
RocksDB is flash-friendly

Benchmark RocksDB on your devices!

Santa Clara, CA
August 2014

Visit
for more information!

hank you!

26

http://rocksdb.org/

