

Erasure Verification of SSDs

What it is and should you care?

Robin England
Senior Research and Development Engineer

What is data erasure / sanitization?

A process by which all user data is irreversibly removed from the media. The process...

Must:

Prevent the subsequent recovery of data

Should:

Permit the re-use of the media

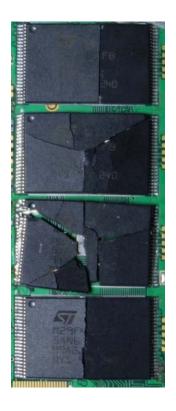
And most importantly must be...

Verifiable!

Why sanitize?

Data security breaches carry significant risks to both individuals and organizations...

- X Identify theft
- X Fraud, financial loss
- Regulatory compliance failure (penalties)
- Breach of Data Protection Act (legal)
- Loss of intellectual property
- Hacking of IT systems
 - Damaged reputation



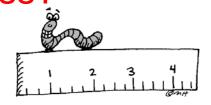
Memory Alternatives?

Destroy?

- Expensive (loss of asset)
- Unpredictable results
- Often requires a 3rd party trust?
- Results cannot be verified

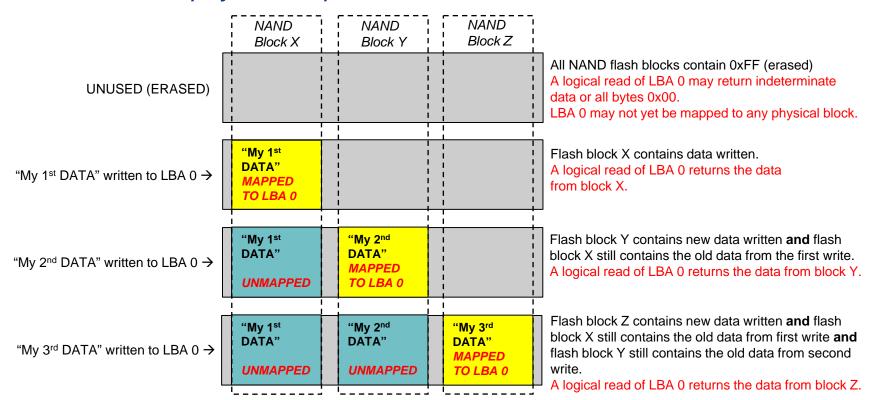
Encrypt?

100	33	31	64	63	40	32	36	
190	F7	9B	DA	E4	10	02	00	0
IA0	2B	CD	BO	43	2D	C5	58	9
IB0	07	46	OB	1E	4B	C4	96	1
ICO	73	AC	EB	FB	ЕЗ	44	98	F
IDO	2F	CD	40	51	AF	7E	E 1	В
190 IA0 IB0 IC0 ID0 IE0	1E	34	F9	АЗ	95	FF	CD	6


Even encrypted data left on device is at risk

The best solution is to *verifiably* sanitize!

How do we measure sanitization success?


- Erased data cannot be recovered at the logical level i.e. standard read commands over device interface
- Erased data cannot be recovered using vendor-unique commands nor firmware hacks
- Erased data cannot be recovered using physical-access methods (NAND memory removal and raw data extraction)

Method 1: Logical Overwrite

- Uses standard interface commands, writes incrementally to all logical blocks
- With SSD physical copies of old data in NAND not overwritten:

Method 2: Vendor Erase Function

Invoked by standard interface command e.g. ATA Secure
 Erase Unit or ACS-3 Sanitize Device

- SSD firmware wholly responsible for the actual erase method used and how well it works.
- Just a Pass / Fail status back to host. Details would be nice!

Method 2: Vendor Erase Function

Rather than pass / fail the SSD could instead provide feedback with empirical data upon completion of the vendor erase function...

- For a crypto-erase (proves DEK has changed):-
- Whilst not guaranteeing the erasure it inspires more confidence in the user that the SSD knows what should be done...

Memory SSD Erasure Verification Service (EVS)

<u>Purpose</u>

To measure and report upon the effectiveness of our client's chosen sanitization method on a specific SSD model and revision

Level 1 (Logical)

- Tests if erased data can be read from the SSD using standard read commands over the device's interface
- No SSDs will be harmed at this level of the process!

Level 2 (Logical and Physical)

- Additionally tests if erased data can be read through extraction of raw data directly from the SSD's NAND memory
- The "guinea-pig" SSD will almost always be dismantled and destroyed during the physical verification process

lemory SSD Erasure Verification Service (EVS)

The Process

1. SSD preparation

- Fixed data pattern: So we know what "user data" to look for!
- All LBAs written multiple times: So SSD uses as many as possible of its spare NAND flash blocks

2. Sanitization

- Client (or Kroll Ontrack) carries out chosen sanitization process on SSD
- This can be just one sanitization method or a combination of methods applied in a pre-determined sequence

SSD Erasure Verification Service (EVS)

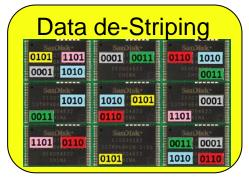
The Process (continued..)

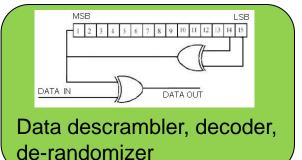
3. Verification

- To level required by client:
- Level 1: Logical verification only
- Level 2: Logical and physical verification: Remove NAND flash, extract raw data, process (to reverse modifications applied by SSD controller), search for user data

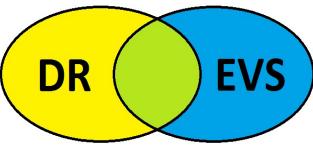
4. Report

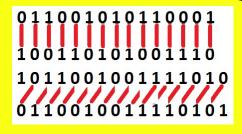
 A conclusion regarding the effectiveness of the sanitization process on the tested SSD model and revision





Erasure Verification – Technical Challenges and relationship to DR (Data Recovery)





Error-correction (ECC)

Data decryption

Bit-level manipulations

Flash Memory Summit 2014 Santa Clara, CA

Memory Who needs and who uses EVS?

- Large SSD storage integrators
- Value-Added Resellers
- SSD and mobile device manufacturers
- Anyone with a need to independently verify their sanitization process for SSD and NAND flash memory
- Case Studies:
 - Corporate IT end user
 - Which sanitization method to use?
 - Which model of SSD to choose?

- Mobile Phone / Tablet manufacturer
 - Is existing sanitization method effective on all variants of integrated NAND flash drive?

- Sanitization is an essential component of data management and the chosen sanitization method must be verifiable.
- A sanitization process that has been tried and trusted on other media types (e.g. hard drives) may not be adequate for SSD.
- End-users have little confidence in the effectiveness of the SSD internal vendor erase function. Device manufacturers and Standards could help by implementing an *empirical* report of erase function outcome.
- Erasure Verification provides an independent check that a sanitization process works to the desired level on known hardware.
- Erasure verification (at NAND flash level) is a complex task and requires a sound understanding of SSD and NAND flash technologies.

Thank You!

Please visit us at booth #819

