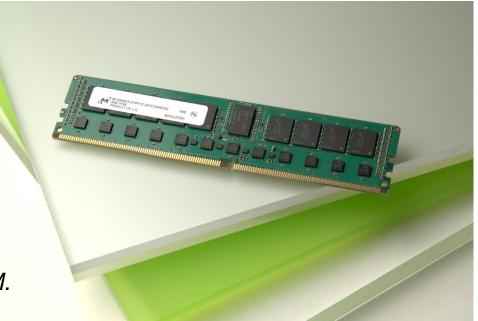

Memory The Case for Composite DIMMs


- Speed/performance driving large data sets to be stored in "warm" or "hot" locations (NVDIMM, PCIe SSDs).
- Enterprise applications need real-time processing to capture, analyze, and respond intelligently to changing events.
- Reliability/uptime is critical for enterprise IT resources.

Maintaining QoS while supporting increasingly demanding enterprise workloads are driving need for higher memory performance and capacity.

- •Write Cache
- Metadata Storage
- Tiered Storage
- In-Memory Database

All require DRAM performance with persistance and/or endurance of NVM.

System Integration -- a maturing ecosystem

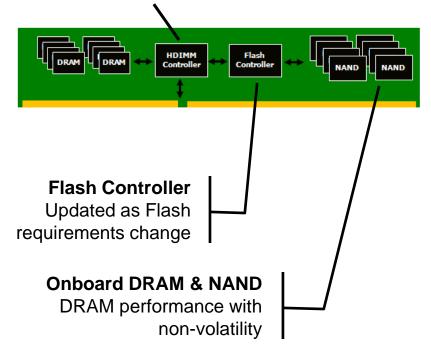
Components

- BIOS/FW
- Chipset
- OS/Software

Platforms

- OEM/ODM
- MB vendors
- Application Dev.

Applications

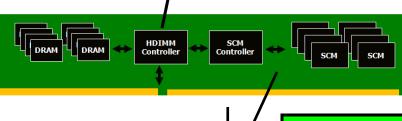

- Server
- Storage
- HPC

Evolution: Composite DIMM

Controller

Primary interface to system; accounts for latency differences between DRAM and NAND

Enables high capacity, application storage space on the DDR bus


- Large application storage with large DRAM cache
- NAND used as fast, local swap space for DRAM memory
- Raw flash block storage with DRAM memory
- Requires significant software/ecosystem enablement to leverage full capabilities
- More transactions to NAND flash require significant NAND management

Evolution: Emerging Tech.

Controller

Primary interface to system; accounts for performance differences between DRAM and SCM

Incorporates key EM benefits without significant changes to system interfaces

- Enables faster time to market for new memory technologies
- Likely requires software/ecosystem enablement to leverage full capabilities

Attribute	Emerging Memories		NAND
	DRAM-Like	SCM	NAND
Non-Volatile	Yes	Yes	Yes
Access Granularity	Small/Byte	Small/Byte	Large
Erase	No	No	Yes
Management	Easy	Easy	Hard
Power	High	Medium	Low
Write BW (x8)	~3200 MB/s	~400 MB/s	~10 MB/s
Read Latency	~25 ns	~100 ns	~10,000 ns
Endurance	Unlimited	10 ⁶⁺	10 ⁴⁻⁵
Cost Per Bit	DRAM	<dram>NAND</dram>	NAND

SCM and SCM Controller As required by application

4

• Memory/storage hierarchy gap exists in current scale-out architectures.

• Evolving workload demands are driving new memory requirements.

• Evolutionary path toward new system capabilities.

• Composite DIMMs using emerging memory variants can extend capabilities of DRAM-based memory.

• Abstracting management of memory affords best potential for higher system performance and greater flexibility and intro for emerging tech.