

#### Achieving100Gb/s Flash Connectivity

#### Why and How Kevin Deierling Vice President Mellanox Technologies

#### Flash is Fast!





# The Storage Delivery Bottleneck

Server





15 x 8Gb/s Fibre Channel Ports

OR

= 12GB/s =



**10** x 10Gb/s iSCSI Ports (with offload)



24 x 2.5" SATA 3 SSDs (each is 500MB/s) OR



2 x 40-56Gb/s IB/Eth port (with RDMA)



# NVMe Flash is Even Faster!

- Flash based SSDs are fast!
  - NVMe: @2.5 GBytes/s
  - DIMM: @10 GByte/s
- Peak throughput is key
  - Particularly for certain workloads
    - Ingest, mirroring, journaling, messaging
- Performance Saves \$\$'s
  - BW=>Latency=>Performance
  - Performance=>Efficiency
  - Efficiency=>TCO



The Networking Flash Gap!!



#### 100Gb/s Needs Innovation @ Every Layer



HYBRID MODEL



- **Application Layer** 
  - Message format
- **Presentation Layer** •
  - Coding 1's and 0's
- Session Layer
  - Authentication. Permissions, Persistence
- Transport Layer
  - End-to-end error control
- Network Layer ۲
  - Addressing, routing
- Link Layer •
  - Error detection, flow control
- **Physical Layer** •
  - Bit stream, physical medium, analog symbol mapping bits

# Innovation Required @ 100Gb/s

- Transport Layer Innovation Required
  - TCP/IP dropped packets a non-starter.
  - Rear-ending someone is not the best way to figure out there is congestion
  - Explicit notification required
  - RDMA, virtual nics, virtual traffic steering, affinity
- Network Layer
  - Virtual as well as physical routing (Easy VM migration)
- Link Layer
  - Lossless Networks using Flow control
    - PFC (on/off) flow control is a blunt instrument
    - IETF considering credit based flow control modeled after InfiniBand
- Physical Layer
  - 100Gb/s signaling means 10ps symbol period!!
    - 3 mm pulse of light in free space!
    - Less <<1cm on FR4 ... Not feasible at this rate
  - Lower symbol rate required through either:
    - Parallel streams: ex: 4x25Gb/s
    - Multi-bit/symbol: ex: PAM4, WDM



TCP/IP Implicit Congestion Notification aka dropped packets and timeouts



PFC: Priority Flow Control



# RDMA: Critical for 100Gb/s



Low Latency, High Performance Data Transfers



InfiniBand - 56Gb/s

RoCE\* - 40Gb/s

#### **RDMA: How it Works**



#### Phy Layer: 100Gb/s in QSFP28 Package



- To fit 100Gb/s in QSFP package requires:
  - Low power electronics
  - 4x25+ Gb/s modulators and detectors
- Silicon photonics integration:
  - no lenses for the laser
  - no isolators
  - no TEC



\* TIA – Transimpedance Amplifier \*\* CDR – Clock Data Recovery

### **Two Basic Technology Options**



VCSEL Based

- Direct laser modulation
  - VCSEL
  - 850nm
  - Multi-mode fiber



Silicon Photonics Based

- Silicon Photonics
  - Fabry Perot or DFB
  - 1550nm
  - Single-mode fiber





# **Silicon Photonics**



TX (Modulator)



RX (Detector)



Electrical & Optical Eye Diagram

Electro-Optical Modulation

- Franz-Keldysh optical absorption modulation



### Two Technologies, Same QSFP



- Quad Small Form Factor Pluggable (QSFP)
  - Flexibility: Copper, Single Mode, Multi Mode



# Thanks! Questions

Flash Memory Summit 2014 Santa Clara, CA

