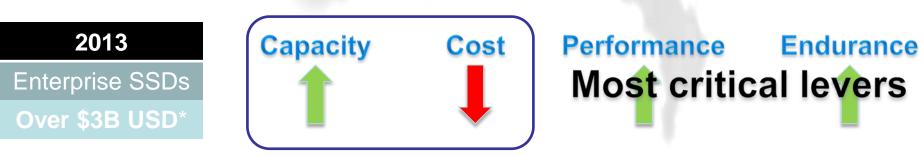


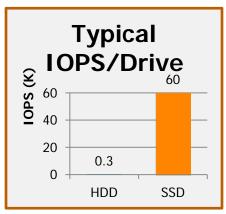
Extending Datacenter Capacity To Drive ROI

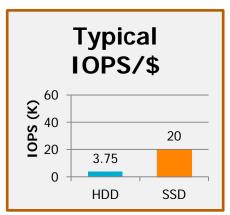
Ajay Bhatia

Director, Product Marketing Management

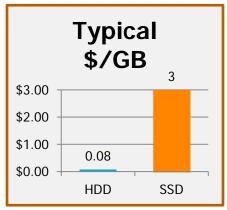

Aug 6, 2014

Flash Memory Summit 2014 Santa Clara, CA

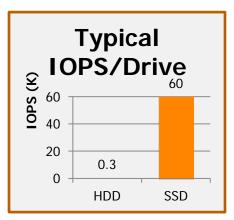

Hyperscale Datacenters & SSD Adoption

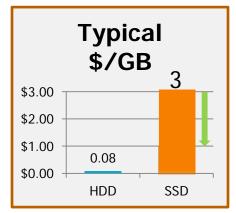


*Forward Insights



Flash is clearly faster than HDDs


Although the performance tier has over 5x better performance/\$


However \$/GB alone is too high to replace all HDDs

Flash in Datacenters

What if you could triple the capacity of the same flash?

You get the same performance over HDDs

And the performance tier is 16x higher per \$ The \$/GB drops to a third to replace all HDDs

ORACLE

Neo4

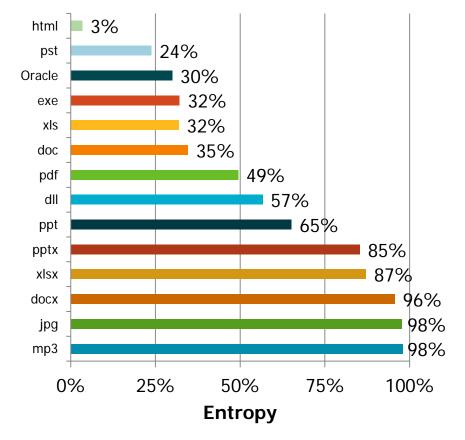
Is this really feasible in an SSD?

Most data does not have 100% entropy and data reduction helps

Linux[®] Web hosting distributions Show ~60% entropy¹

Binaries and Shared Libraries

Database entropy as low as only ~ 30%² mongoDB CouchDB COUCH


redis

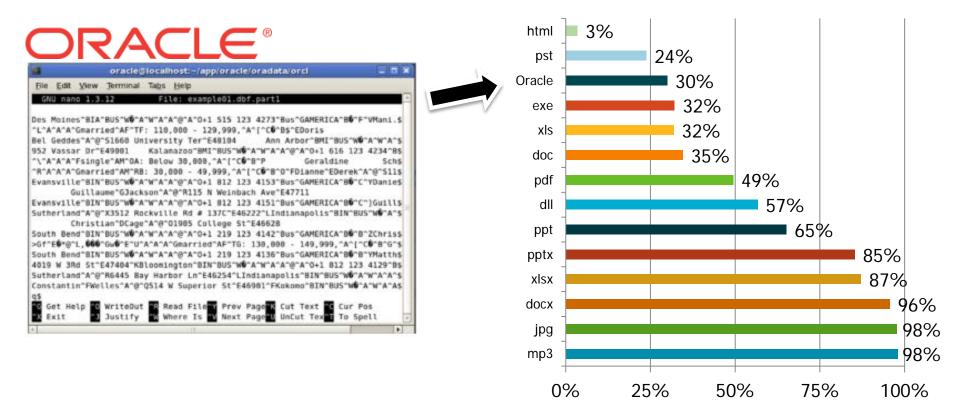
Jackrabbit

∢EROSPIKE

DvnamoDB

OrientDB

¹LSI calculations on Oracle Database solutions


²http://www.thesmarterwaytofaster.com/pdf.php?c=LSI_WP_NytroWD-DuraWrite_040412 ³Measured by WinZip

Entropy by file type³

Is this really feasible in an SSD?

Most data does not have 100% entropy and data reduction helps

Entropy by file type³

¹LSI calculations on Oracle Database solutions

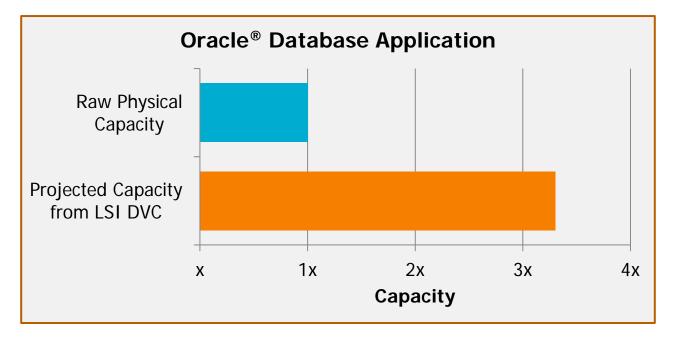
²http://www.thesmarterwaytofaster.com/pdf.php?c=LSI_WP_NytroWD-DuraWrite_040412 ³Measured by WinZip

Entropy

Flash Memory On-the-fly Compression Issues

Compression Engine Location	Issue	Solution / Concern
All Locations	Need some level of predictable entropy	 Datacenters now have more knowledge of their data
	 Operating systems today don't understand variable max capacity 	 Customize drivers or modify already custom OS
CPU	Expensive resource and limited max throughput	Use a device-based solution
HDD	No variable mapping table; assumes 1:1 map from host	Major re-architecting required
SSD	FTL must be re-architected to support non-constant data size	 Complex FTL must be created for data placement, garbage collection, etc.

This is not a simple problem to solve

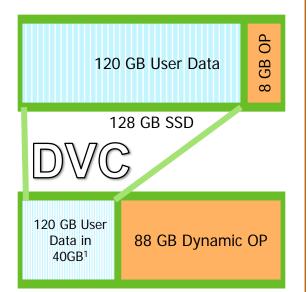

What SSDs today support variable map sizes?

- LSI[®] SandForce[®] Flash Controllers employ DuraWrite[™] data reduction
 - Manages variable-size data placement on the flash

DuraWrite Feature	Benefit
Incorporates a novel Flash Translation Layer (FTL)	 Handles variable-sized data for writing, reading, and garbage collection
	 Manages data spanning flash page boundaries to maximize space utilization
Supports variable data length	 Incoming data size not restricted to be a power-of-two
	 Each LBAs can be a unique size
Provides for multiple flash page sizes to support variable code rate	■ Working in conjunction with SHIELD [™] technology

Flash Memory LSI DuraWrite[™] Virtual Capacity (DVC)

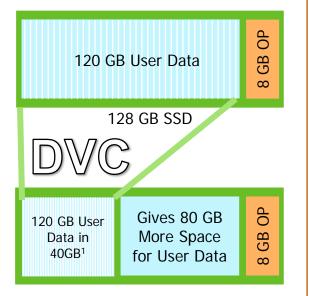
- Increases the available storage capacity for typical data
- The lower the entropy, the higher the capacity increase
- Continue to get SSD endurance or performance benefits


DVC greatly lowers the \$/GB of available capacity to the user

Source: Projection based on LSI internal testing of Oracle database entropy. Results published in LSI white paper, "Using DuraWrite™ Technology to Accelerates Flash Performance and Extend Write Lifetimes on the Nytro™ WarpDrive™ Application Acceleration Card", 2012

Speed & Endurance

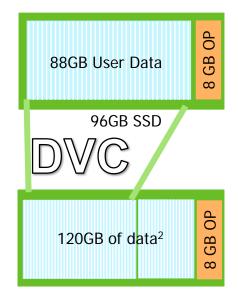
Enterprise Data Drive



Greater Dynamic Over Provisioning increases performance and endurance

Extra user data space

30% entropy database



Minimize costs

60% entropy boot drive

Able to use a lower cost SSD solution

¹Assumes a 33% entropy. Actual size reduction dependent upon data entropy.

² Assumes a 60% entropy. Actual size reduction dependent upon data entropy.

Use Case	Native User Data Storage	Dynamic Caching
What	 Additional flash space appears as a user accessible SSD 	 Additional flash space managed by caching application
Pros	 User capacity increases for same flash cost 	Increases cache size for same flash costNo OS changes
Cons	 Requires OS driver changes Easier with Linux or custom OS 	 Requires integrated caching application
Support	 LSI Nytro[™] product line Select SandForce Driven[®] program SSDs 	LSI Nytro product lineSelect SandForce Driven program SSDs
Market	 Enterprise with custom OS or Linux Client with Linux 	 Enterprise focus

- Flash use in datacenters is expanding
- Compression can greatly reduce capacity & cost concerns

- Major complexities around on-the-fly compression
- LSI DuraWrite Virtual Capacity addresses those concerns

- Available in LSI Nytro product line & select SandForce Driven SSDs
- All-flash performance at hard disk price may not be a dream