# How RRAM is Changing the Landscape of Wearable and IoT applications



Reinventing Memory for Things™

## **Corporate Overview**







### Adesto is Shipping the World's First Discrete RRAM Device







## **CBRAM Basics**



Storage element scalable to <10 nanometers

Cell Structure: 1T1R

T = Std Logic Transistor

R = CBRAM Resistive Storage Element

#### **Current Product Highlights**

- Over 50,000 Write Endurance Cycles (at die level)
- 10x faster Byte Write than today's ETOX based Flash
- VPP < 2V (no high voltage requirement)
- Solder Reflow Process Compatible (high temp reliable)
- Guarantee 10 years retention at 85°C





- Bit Addressable (Read/Write) Serial NVM Device (32Kb to 1Mb)
- Integrated on industry standard Logic CMOS Technology: Embedded Memory Solution
- Porting to sub 55 nm to enable higher density products

### NOT SINGLE CELLS ONLY, THESE ARE **PRODUCT** LEVEL SPECS



## Low Power Sensors: Powered by Battery/Energy Harvesting

Intelligence in Things =





# Adesto CBRAM®

### Sports and Fitness:





#### Home Automation:



### **Medical Sensors:**

Blood Pressure Glucose Monitor Pancreatic Monitor Muscle Activity Electrocardiogram ... and more



# Side-by-Side Energy Consumption: CBRAM vs EEPROM



### **Heart Rate Monitor:**

Recording of Heart Rate on a Serial NVM Device Using a Finite Reservoir of Energy





Reinventing Memory for Things™

### **CBRAM** as Application Specific Memory for Low Power Applications

**CBRAM**: World's <u>Lowest Energy Non-Volatile Memory Technology</u> Ever Demonstrated Adesto Technologies Demonstrates Non Volatile Memory Operating at sub 1V in a Body Sensor Chip - VLSI Symposium 2013

#### SENSOR CHIP with embedded CBRAM OPERATING by ENERGY HARVESTING

**Battery Operated Wearable Electronics** 

**Ultra Low Power Embedded Devices** 

**Energy Harvesting Body Sensors** 

| Timing Blocks And Config. |                       |  |  |  |
|---------------------------|-----------------------|--|--|--|
| 64kb<br>CBRAM<br>IMEM     | 64kb<br>CBRAM<br>DMEM |  |  |  |
|                           | Prog. FIR             |  |  |  |
| GLK<br>GEN E<br>Scan      |                       |  |  |  |
| Cul RISC<br>µProc         |                       |  |  |  |

| Parameter                 | Adesto's<br>CBRAM | Today's<br>Flash | Improvements |
|---------------------------|-------------------|------------------|--------------|
| Core Read Voltage (V)     | 0.35              | 1                | 60% Lower    |
| Read Energy Per Bit (fJ)  | 50                | 500              | 10x Lower    |
| Core Write Voltage (V)    | 0.6               | 10               | 17x Lower    |
| Write Energy Per Bit (pJ) | 1                 | 100              | 100x Lower   |



7

### **CBRAM as Application Specific Memory For Medical Applications**

### Application

Storage of code and data in medical equipment and health care:

*Examples: Orthopedics, Blood Bags, Catheters, Glucose Meters, Wireless Patient Monitoring* 

#### Problem

Today's Flash memories are not compatible with medical sterilization

Methods of Sterilization include Irradiation, Thermal, Chemical.

### Solution

CBRAM technology is proven to maintain data integrity after sterilization processes.

### **CBRAM's Demonstrated Immunity** to Standard Sterilization Processes



#### Data Integrity of Serial Non Volatile Memory Devices After Gamma and e-Beam Irradiation



Tests Performed by leading medical companies and 🛛 🐼 nordion





