

Customization Key to Embedded Storage Applications

Victor Tsai

Dir. Flash Product Marketing

SMART Modular Technologies

- Embedded Storage Market Overview
- Design Considerations
- Needs for Customization
- Case Studies

Embedded Storage Is Everywhere!

Automotive

In-Vehicle Infotainment

Industrial & Medical Devices

Various Industrial

Medical

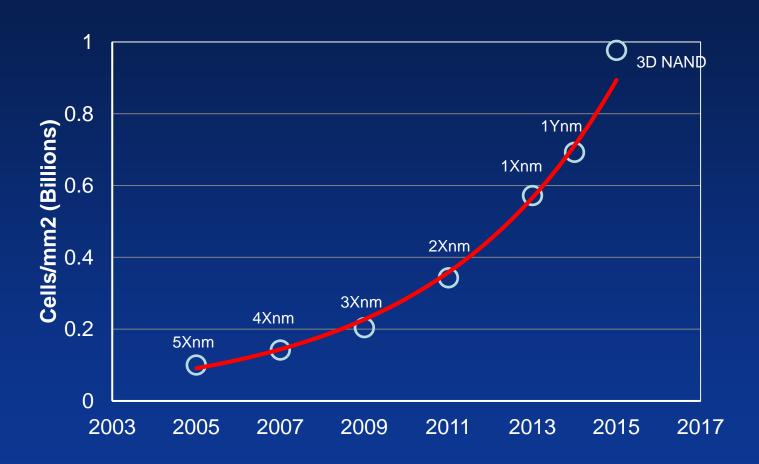
RFID and POS

Networking Appliances

Infrastructure
Equipment

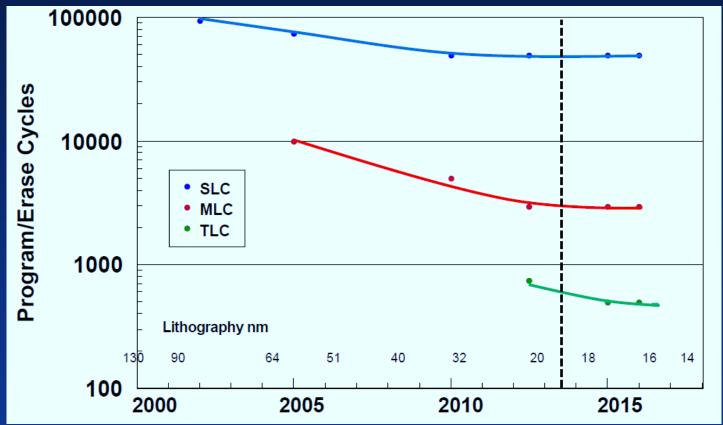
Enterprise Video /

Servers



Embedded Design Considerations

- NAND technology
- Hardware interface and protocol standards
- Software support infrastructure
- Performance requirements and use cases
- Form factor
- Thermal constraints
- Customization for specific needs
- Product life-cycle
- Cost


NAND Process Scaling => Lower Cost

Relentless scaling to reduce bit cost while increasing bit production

NAND Flash Memory Endurance Trending Downward

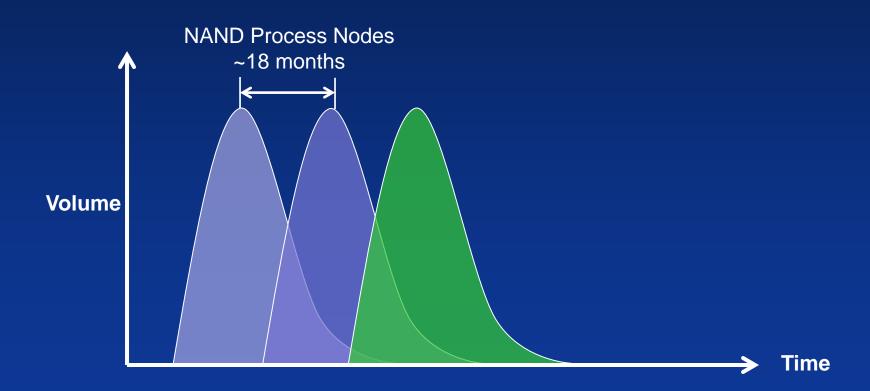
Source: iSuppli Q4'12

Matching the right NAND technology to applications

- Price / Endurance / Density tradeoffs

Interface Technology Comparison (for Embedded Applications)

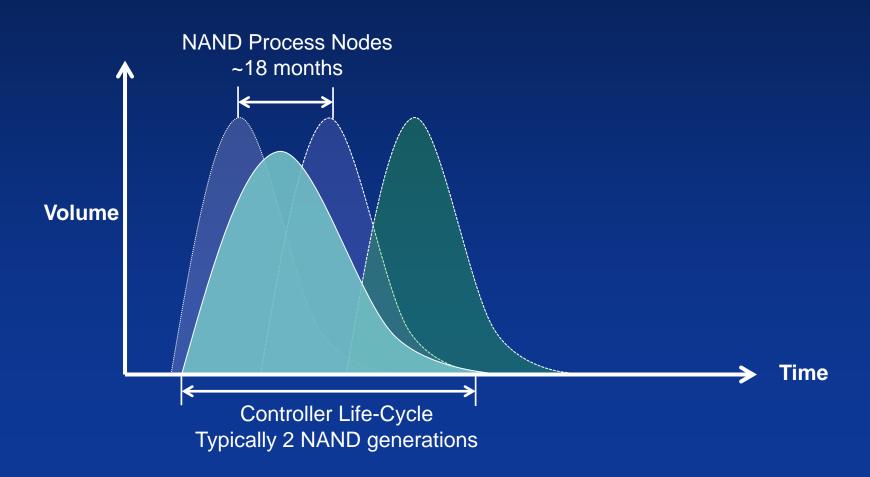
	SATA II/III	PCIe (AHCI)	PCIe (NVMe)	USB 2.0	CF	CFast	SD 2.x/3.0	eMMC 4.5
Command Protocol	АТА	ACHI (ATA)	NVMHCI (NVMe)	SCSI	ATA	ATA	SD	еММС
Seq. R/W Performance (MB/s)	~200/400 ~200/400	>500 >500	>500 >500	~40 ~20	~40 ~20	~100 ~100	~40 ~20	~100 ~40
Random R/W Performance (IOPS)	~30K ~30K	~50K ~50K	~50K ~50K	~1000 ~100	~1000 ~100	~15K ~10K	~1000 ~100	~3K ~1K
Peak Power Consumpt'n	>2W	>2W	>2W	~1W	~1W	>1W	<1W	<1W
Standby Power	Tens of mW	Tens of mW	Tens of mW	Single-digit mW	Single-digit mW	Single-digit mW	<1mW	<1mW
Boot Support	No	No	No	No	No	No	No	Yes
User Configurable Memory	No	No	No	No	No	No	No	Yes
Software Support								
Adoption Trend			?					


Managing Product Life-Cycle

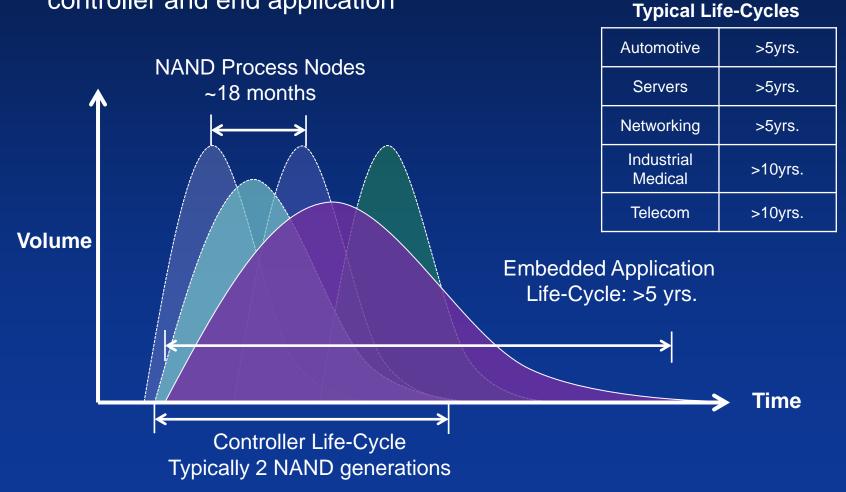
Considerations:

- Longevity of interface technology and software backward compatibility
- Supplier's product life-cycle management strategy, technology migration path
 - Form, Fit, Function

Product Life-Cycle Mismatch


 Mismatch in product life cycles among NAND, controller and end application

Product Life-Cycle Mismatch


 Mismatch in product life cycles among NAND, controller and end application

Product Life-Cycle Mismatch

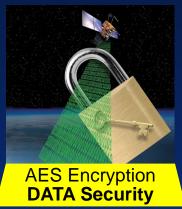
 Mismatch in product life cycles among NAND, controller and end application

Designed for Demanding Conditions

- Long product lifetime in the field
 - Extended endurance and reliability requirements
- Data retention at high storage temperature
- Power loss protection
 - Also for crash dump application, separate from main storage application
- High shock tolerance
 - Transportation, defense, military
- Thermal constraints
 - Industrial temp (-40°C to 85°C) for MLC needed
- Use Case:
 - For telecom, NEBS compliance is a costly, major undertaking
 - Once the equipment is certified and deployed it is in the

Matching Application Needs

- Workload
 - Mostly read or write
 - Sequential or random access more important
- Startup time and specific latency requirements
- Power and thermal constraints



→ Driving the need for FW optimization and customization

Custom Requirements

- Data Security
 - Data encryption AES crypto engine
 - Secure Erase
 - e.g. gaming application, military/defense
- Custom Burn-In
 - MLC Flash endurance screening
- Device Health Reporting
 - P/E cycle count
 - Reserved block count

- Customer X redesigns its high-performance, high-availability system to replace the dedicated embedded Flash device for boot and system codes, and the SATA drive for user data in the existing design with a single SATA SSD
- Boot/system codes and user data have very different characteristics, usage model and reliability requirements
- Solution: Customized firmware to enable boot/system codes and user data to be put in separate partitions that are managed separately

- Customer Y has a usage model that requires high number of drive writes per day and sustained write performance
- Solution: After analyzing the data workload, firmware was tweaked to improve the write performance for the specific workload

- Flash technology is evolving at a rapid rate and is becoming more and more complex for embedded applications.
- Design considerations and product customization specific to embedded applications
- Customization is the key to meet application's specific needs

QUESTIONS?

Thank You