

Understanding the Impact of Threshold Voltage on Flash Reliability and Performance

Wei Wang¹, Tao Xie², Deng Zhou¹

¹Computational Science Research Center, San Diego State University ²Computer Science Department, San Diego State University

28th ACM International Conference on Supercomputing

Outline

- Background and model analysis
- Threshold voltage reliability model
 - Testing methodology
 - Experimental results
 - Model establishment
- A case study: threshold voltage reduction
 Summary

NAND Flash

 NAND flash based solid state drives (SSDs) have been largely adopted in supercomputing centers.

(a) Flash memory cell and block structure

(b) Flash memory

MLC Flash

 Flash memory uses threshold voltages to represent data information

- Each memory cell can store 2 bits data
- A narrowed threshold voltage range
- A shrunk memory cell size

Threshold Voltages

What is the impact of threshold voltages on flash performance and reliability?

ISPP is a standard cell programming process

$$V_{th} = V_{start} + \beta \Delta V_{pp} N_s$$

 N_s represent the number of programming steps; β is a material related coefficient.

Memory Threshold Voltage Distribution

- Cells are not identical
- Threshold voltages of cells programmed to the same state are different among cells

Probability density function (Gaussian)

$$f(x) = \sum_{s=0}^{2^{M}-1} P(S_s) \frac{1}{\sqrt{2\pi}\delta_s} \exp\{\frac{-(x-\mu_s)^2}{2\delta_s^2}\}$$

• $P(S_s)$ is the probability of being state S_s . In a 2-bit MLC $P(S_s) = \frac{1}{4}$.

Cell-to-cell Interference

$$\Delta V_{th}^{(p,q)} = \gamma_{fg1} \Delta V_{th}^{(p,q+1)} + \gamma_{fg2} (\Delta V_{th}^{(p-1,q)} + \Delta V_{th}^{(p+1,q)})$$

 Y_{fg1} and Y_{fg2} are the floating gate coupling ratios.

$$\Delta V_{th}^{(p,q)} = (\gamma_{fg1} + 2\gamma_{fg2}) \Delta V_{th}^{\text{max}}$$

If the maximum threshold voltage difference is reduced, the floating gate coupling effect is reduced.

Threshold Voltage Reliability Model

Testing Methodology

- ★ The threshold voltage of each state in a flash memory is fixed by its internal logic.
- ★ Each state (i.e., data pattern) represents a particular threshold voltage level.

• We can control threshold voltage of a memory cell by programming different data patterns to it.

★ The number of bit errors per page

O The number of errors per cell: Any bit flip in a 2-bit cell is recorded as a cell error.

 Cell errors are collected during every P/E (program/erase) cycle

Pre-defined data eliminate the cell-to-cell interference that exists in real applications

A revised P/E scheme

Hardware Platform

- Xilinx Xupv5-Lx110t evaluation board
- Ming II flash daughter board

Software Stack

- Flash controller on FPGA, no ECC;
- Embedded Linux, 3.0 kernel version;
- A driver for controller;
- Testing software preforms the P/E scheme and count errors.

Experimental Results (1/2)

Average number of cell errors in four cell pages

- (1) The number of cell errors increases as the P/E cycles enlarge;
- (2) The cell page programmed exhibits the most unreliable characteristic;
- (3) Cell pages programmed to a higher voltage incur more the P/E errors as cycles enlarge;

Experimental Results (2/2)

Number of errors in LSB and MSB pages

• LSB pages errors than programmir Two-bit MLC

ger number of bit ages under all

Model Establishment (1/4)

- Consider the three programming states
- Use the nonlinear least square fitting method

 Compared the exponential-law model, degree 2, 3, and 4 polynomial model

emory Model Establishment (2/4)

 Model errors (mean square deviation) comparison

Cell page	Exponential- law	Degree 2 polynomial	Degree 3 polynomial	Degree 4 polynomial
'10'	14.619	16.784	20.276	215.551
'00'	9.628	14.482	16.646	74.392
'01'	8.442	7.934	13.436	15.571

Model Establishment (3/4)

- Parameter fitting
 - Find a set of a and b
- As each pair of a and b represent a state (i.e., V_{th})

$$a = -5E^{-4} \ln(V_{th}) + 0.0019$$
$$b = 0.036 \ln(V_{th}) + 0.6616$$

Model Establishment (4/4)

$$Err = (-5E^{-4}\ln(V_{th}) + 0.0019)e^{(0.036\ln(V_{th}) + 0.6616)N} - 1$$

General Form:

$$Err = (\alpha_1 \ln(V_{th}) + \beta_1)e^{(\alpha_2 \ln(V_{th}) + \beta_2)N} - 1$$

The α_1 , β_1 , α_2 , and β_2 are determined by the characteristics of a flash memory

Page Programming (1/2)

- Pages programmed to a lower threshold voltage have a better programming performance.
- The programming time decreases as the number of P/E cycles increases.

Page Programming (2/2)

(b) LSB page programming time

(c) Page programming time in a block

- Programming speed of an MSB page is much faster than that of an LSB page.
- Programming time of MSB pages that are programmed as '00' and '01' is 1.42 times longer than that of MSB pages programmed as '11' and '10'.
- MSB pages have almost the same programming time, whereas the programming time of LSB pages varies substantially.

Block Erase

- In flash's early lifetime, blocks programmed to a higher threshold voltage have a shorter erase time.
- The erase time increases to 9 *ms* when flash comes to the end of its lifetime.

A Case Study: Threshold Voltage Reduction

A Case Study

- The value of threshold voltage influences flash reliability and performance.
- Why not reducing the threshold voltages of each state in an MLC flash memory?
- We propose the Threshold Voltage Reduction (TVR) approach by reducing the margin between two adjacent states.
 - Performance and reliability

Threshold Voltage Reduction

(a) A normal V_{th} distribution.

(b) A TVR applied V_{th} distribution.

(b) Shows an extreme case that the width of all the three margins are shrunk to zero. (retention free)

TVR Analysis(1/3)

 The probability that the voltages of cells cross the read reference voltage can be calculated by the tail probability function.

$$RBER_{MSBpage} = \frac{1}{4}Q_{1}\left(\frac{\left|\Delta_{2}\right|}{\delta_{1}}\right) + \frac{1}{4}Q_{2}\left(\frac{\left|\Delta_{3}\right|}{\delta_{2}}\right)$$

$$RBER_{LSBpage} = \frac{1}{4}Q_{0}\left(\frac{\left|\Delta_{0}\right|}{\delta_{0}}\right) + \frac{1}{4}Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) + \frac{1}{4}Q_{2}\left(\frac{\left|\Delta_{4}\right|}{\delta_{2}}\right) + \frac{1}{4}Q_{3}\left(\frac{\left|\Delta_{5}\right|}{\delta_{3}}\right)$$

 $Q_s(x)$ is the tail probability function of each state.

TVR Analysis(2/3)

 To simplify the computation, we assume that a forward state change and a backward state change have the same probability.

$$Q_{1}\left(\frac{\left|\Delta_{2}\right|}{\delta_{1}}\right) = Q_{2}\left(\frac{\left|\Delta_{3}\right|}{\delta_{2}}\right)$$

$$Q_{0}\left(\frac{\left|\Delta_{0}\right|}{\delta_{0}}\right) = Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{2}\left(\frac{\left|\Delta_{4}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{5}\right|}{\delta_{3}}\right)$$

$$Q_{0}\left(\frac{\left|\Delta_{1}\right|}{\delta_{0}}\right) = Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{5}\right|}{\delta_{3}}\right)$$

$$Q_{0}\left(\frac{\left|\Delta_{1}\right|}{\delta_{0}}\right) = Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{5}\right|}{\delta_{3}}\right)$$

$$Q_{0}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

$$Q_{0}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

$$Q_{0}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

$$Q_{0}\left(\frac{\left|\Delta_{1}\right|}{\delta_{1}}\right) = Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right)$$

$$Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

$$Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

$$Q_{1}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{2}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

$$Q_{2}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

$$Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right) = Q_{3}\left(\frac{\left|\Delta_{1}\right|}{\delta_{3}}\right)$$

TVR Analysis(3/3)

 For modern flash memory, RBER must be lower than 4.5E-4 (industry standard).

$$\Delta_0 \approx 1.40; \Delta_1 = \Delta_4 = \Delta_5 \approx 0.36; \Delta_2 = \Delta_3 \approx 0.34$$

 The maximum threshold voltage that can be reduced is determined.

Flash Memorp rogramming Speed Improvement

Programming speed is determined by ISPP

$$V_{th} = V_{start} + \beta \Delta V_{pp} N_{s}$$

$$\lceil N_{s} \rceil = \frac{\Delta V_{th}}{\beta \Delta V_{pp}}$$

19 steps → 9.5 steps
Programming speed is improved by 50% on average.

Reliability Improvement

Threshold voltage reliability model

$$Err = (-5E^{-4}\ln(V_{th}) + 0.0019)e^{(0.036\ln(V_{th}) + 0.6616)N} - 1$$

RBER is lower than 4.5E-4

12.46E5 → 13.35E5 P/E cycles Reliability is improved by 7.1%.

Impact on SSDs (1/2)

- DiskSim 4.0 and Microsoft SSD module
- Real-world traces (Financial 1, Financial 2, lozone, and postmark)

		Blocks per Plane		Dies per package	
4 KB	64	2,048	4	2	4 - (4, 8)

Block erase (µs)	Program (µs)	Read (µs)
2,000	200 – (100, 200)	20

Impact on SSDs (2/2)

TVR can reduce SSD's overall mean response time by 11% to 35% (in a 4- by 11% to 35% (in a 4- channel example).

When we increase the package parallelism from 4 to 8, the overall mean response time consistently decreases (in exchange the improvement is 59%).

Summary

- The threshold voltage in MLC plays a very important role in both flash performance and reliability.
- An empirical threshold voltage reliability model is established based on experimental results.

 A TVR approach that can improve flash performance and reliability is proposed.

Future Work

 Consider the data retention requirement and improve the TVR approach.

 Reducing the average programming voltage level by transforming high threshold voltage data patterns into low threshold voltage date patterns.

Acknowledgements

- We thank Steven Swanson and his Non-volatile Systems Laboratory for their support on the hardware platform.
- We thank the anonymous reviewers for their constructive comments that improve this paper.

 This work was supported in part by the U.S. National Science Foundation under grant CNS (CAREER)-0845105.

Questions?