

Solid State Solutions for IoT Applications

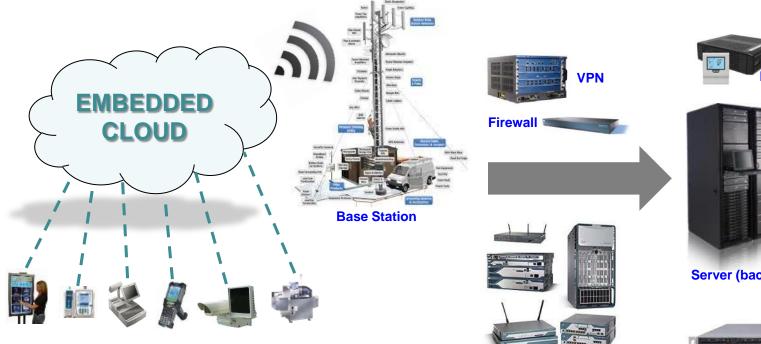
Value-add SSD Technologies Overcome Embedded/Industrial Design Challenges

Scott Phillips - Marketing Director, Virtium

- The Internet of Things (IoT)
- Common IoT Issues/Challenges
- The Essence of "Value"
- (Value-add) Solid State Storage for IoT
- Summary

Flash Memory The Internet of Things (IoT)

- Billions of "intelligent" devices deployed into global infrastructure by end of the decade
- Key challenges:
 - Compute footprint and power reqs will shrink
 - Ruggedness, reliability and endurance will rise
- Application-specific SSD solutions required to address challenges



Infrastructure: "Feeding the Cloud"

Acquisition ➤ "Big Data" Analytics

Kiosk, Signage, Medical, POS, Terminal, Security, **Energy, Automation, Transportation**

Server (backup module)

Storage Appliance (boot)

------INFRASTRUCTURE ------

IoT Storage Requirements

	Client	Enterprise	Data Center	IoT (Infrastructure)
Application	OS and user data	persistent back-end for DRAM or high perf. cache for tiered storage	OS and user data, dedicated server	OS and system data; single-source user data
Market driver	Read IOPS for instant-on, better user experience	R/W IOPS and low latency for 100's or 1000's of VM users	Build-your-own boxes (Google/Amazon, etc.)	Ruggedness, reliability, limited re-qualification
Main Interfaces	eMMC for tablets/phones SATA 6G → PCIe	SAS, PCle x8 or x16, mixed workloads	SATA 6G → PCIe	SATA 3G, 6G; USB 2.0, PATA/CF; PCIe just starting
Capacity	128 GB to 1TB	200GB to 1.6TB	120GB to 1TB	128MB to 512GB
Form factors	2.5", mSATA → M.2, BGA	2.5", PCIe card, rack appliances	2.5" 7mm, mSATA → M.2	All SATA, 10-pin eUSB, CF, SD
Endurance	< 20GB/day	5-10 full drive writes per day	3 full drive writes per day	Read only to 300GB per day
Years of operation	2-3 years , 8 hours/day	5 years , 24 hours/day	3 years , 24 hours/day	10 years , 24 hours/day
Operating temperature	0° to 70° C	0° to 60° C	0° to 70° C	0° to 70° C -40° to 85° C

Flash Memory Common IoT Issues/Challenges

Issue / Challenge	"Standard" SSDs	"Infrastructure" SSDs
Systems getting smaller	2.5" SSD larger than some systems	60%+ smaller than 2.5" SSD
Low power/heat reqs (green, no fans)	Typically 3+ watts (perf over power)	Typically under 2W (balance perf/power)
Extreme temps, humidity, shock/vib	Temps 0C/60C, controlled environment	Designed/tested to -40C/85C, ruggedized
24x7 uptime with some power loss	Designed for "graceful" shutdown	Built-in power-fail protection
5+ year uninterrupted performance	1-2 year warranty, 1M hour MTBF	3-5 year warranty, 2M+ hour MTBF
<64GB capacities with low budgets	100GB+ min capacity (overkill)	8GB – 512GB for high/low capacity needs
Parts available thru application life	1-2 year product lifecycle	5+ year product lifecycle

Flash Memory Common Design Concerns

GOAL: SOLVE PROBLEMS AND ALLEVIATE CONCERNS

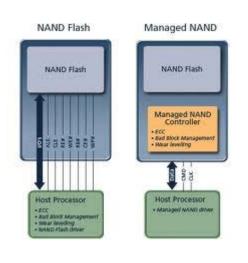
emory The Essence of Value

VALUE

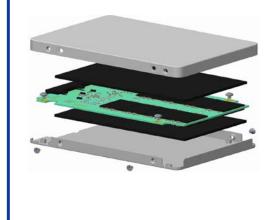
- relative worth, *utility*, or importance

VALUE ADDED

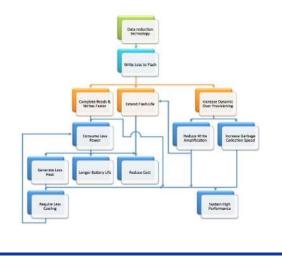
of, relating to, or being a product whose value has been increased especially by special manufacturing, marketing, or processing



Flash Memory General Value-Add Examples


Managed NAND

- Most basic
- Controller manages basic host I/O and NAND flash function


Hardware Features

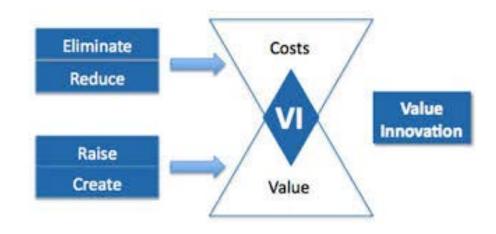
 Design mods for form-factor, power, security, reliability, environmental, etc.

Software Features

 Firmware mods for endurance, data integrity, performance, compatibility, etc.

Memory Specific Value-Add Technology

Feature	Benefit	
Small Designs	Less than half the size of 2.5" SSD/HDD for space-constrained apps	
Low Power/Heat	Under 2W for "green" and/or sealed, fan-less systems	
Ruggedized	Tolerant to -40C to 85C temps, high humidity, mil-grade shock/vib, etc.	
High Reliability	Built-in power-fail protection to protect against unexpected power-loss	
Long Endurance	Flash management to extend NAND well beyond mfg stated P/E cycles	
Performance	Performance optimized/tuned to host application workload	
Workload Monitoring	Provide insight into host data workloads for system/application tuning	
Reporting	Real-time health and lifespan monitoring to reduce potential downtime	
Security	Built-in levels of data security for select applications	
Availability	5+ year product availability for long-term application deployments	

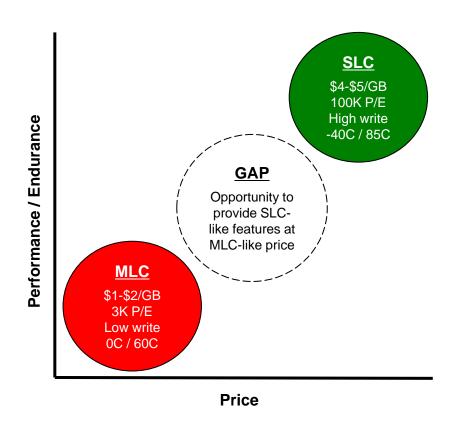


CONCEPT: "Value Innovation"

GOAL: increase value while reducing cost

HOW: focus on solving problems, not just tech

- Cost savings achieved by eliminating or reducing traditional spec-based factors
- Value increased by raising or creating new factors that solve problems and increase utility


Memory Value Innovation Example

Issue / Problem

- SLC endurance/temp good but \$\$\$ too high
- MLC endurance/temp not sufficient

Value Innovation


 Offer SLC-like features at MLC-like price

- IoT is a huge and fastgrowing opportunity....but presents challenges
- Standard "off-the-shelf" SSD technology not good enough

Deliver value-add features that solve real-world customer problems, while reducing cost

