Noise Modeling and Capacity Analysis for NAND Flash Memories

Qing Li, Anxiao (Andrew) Jiang and Erich F. Haratsch

July 24, 2014

Outline

- 1 Motivation
- 2 Fundemantal concepts on flash memories
- 3 Channel Modeling for Errors in Flash Memories
- 4 Capacity analysis of flash memory
- 5 Conclusion and future work

1 Motivation

Flash memory is a significant nonvolatile memory technology

Flash memories are not reliable

 Noise/disturbs: retention error, cell-to-cell interference, program disturb, etc.

Figure 1: From Yu Cai et al, Carnegie Mellon University

Contributions of this paper

- Suvery noise and construct channel models.
- Analyse flash capacity under those models.
- Explore some useful schemes against noise.

2 Fundemantal concepts on flash memories

The structure of flash memories

• Flash chip $\rightarrow \cdots \rightarrow$ flash block \rightarrow flash page \rightarrow flash cell.

Structure and operations of flash memory cell

• Flash memory cell and its representation used.

• Use electrons to represent data.

Flash memory cell operations

- Program/write: inject electrons to floating gate.
- Erase: remove electrons from floating gate.
- Read: measure the number of electrons in floating gate.

Structure and operations of flash memory array

- Program/read unit is a page.
- Erasure unit is a block.

3 Channel Modeling for Errors in Flash Memories

Inaccurate programming

•
$$Z_k = V_{i,j}(0) - V_k, \ Z_k \sim \mathcal{N}(0, \sigma_k).$$

Retention Error

•
$$V_{i,j}(t) = V_{i,j}(0)e^{-v_{i,j}t} + Z_{re}.$$

- $V_{i,j}(t)$ - cell level for cell $c_{i,j}$ at time t

Cell-to-cell interference

$$\begin{aligned} V_{i,j} &= \hat{V}_{i,j} + B_x(\hat{V}_{i,j-1} + \hat{V}_{i,j+1}) + B_y(\hat{V}_{i-1,j}) \\ &+ \hat{V}_{i+1,j}) + B_{xy}(\hat{V}_{i-1,j+1} + \hat{V}_{i-1,j-1}) \\ &+ \hat{V}_{i+1,j+1} + \hat{V}_{i+1,j-1}) + Z_{inter}, \end{aligned}$$

Read disturb

- $V'_{i,j} = V_{i,j} + \gamma^{rd}_{i,j} + Z_{rd}.$
- V_{i,j} cell level before read disturb; V'_{i,j}- cell level after read disturb; γrd- average cell level increase due to read disturb; Z_{rd} possible deviation.

Pass disturb

•
$$V'_{i,j} = V_{i,j} + \gamma^{pasd}_{i,j} + Z_{pasd}$$
.

 V_{i,j} - cell level before pass disturb; V'_{i,j}- cell level after pass disturb; γ^{pd}average cell level increase due to pass disturb; Z_{pd} — possible deviation.

Program disturb

- $V'_{i,j} = V_{i,j} + \gamma^{prod}_{i,j} + Z_{prod}$.
- $V_{i,j}$ cell level before program disturb; $V'_{i,j}$ cell level after program disturb; γ^{pd} average cell level increase due to program disturb; Z_{prod} possible deviation.

4 Capacity analysis of flash memory

In this section, we analyze the impact of noise on channel capacity with our model

- Capacity degrades with flash operations.
- Impact of sub-threshold for flash capacity.
- Benefit of dynamic thresholds.

Capacity degrades with flash operations (1/2)

Capacity degrades with flash operations (2/2)

The impact of sub-thresholds for flash capacity (1/2)

Probability of analog level

Probability of analog level

• More sub-thresholds, more read disturb.

The impact of sub-thresholds for flash capacity (2/2)

 There is a complex trade-off between the number of sub-thresholds and flash capacity.

Dynamically adjust reference threshold voltages (1/2)

Probability of analog level

Probability of analog level

• Dynamically adjust references to minimize error probability.

Dynamically adjust reference threshold voltages (2/2)

5 Conclusion and future work

- We have explored noisy in NAND flash memories and their impacts on capacity.
- Future work: precisely characterize the mathematical formulas of noise.

Thank you!