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e The performance of an LDPC code with iterative
decoding Is measured by:

1. The error performance (or coding gain or how
close to the Shannon limit),

2. The rate of decoding convergence (how fast the
decoding process terminates),

3. Error-floor (how low the error rate can achieve).
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o The performance of an LDPC code is determined by a
number of structural properties collectively:

1. Minimum distance (or minimum weight);
. Girth of its Tanner graph;

2
3. Cycle distribution of its Tanner graph;
4

. Connectivity;
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Tanner graph;

6. Degree distributions of variable and check nodes of
Its Tanner graph;

7. Row redundancy of the parity-check matrix,

8. Other unknown structures

* No single structural property dominates the performance
of a code.

e It is still unknown how the code performance depends on
the above structural properties analytically as a function.
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 Major methods for constructing LDPC codes can be
divided into two general categories:

1. graph-theoretic-based constructions
2. algebraic-based methods

« Most well known graph-theoretic-based construction
methods are PEG (progressive edge growing) and
protograph-based methods.

* Algebraic constructions of LDPC codes are mainly based
on finite fields, finite geometries, and combinatorial
designs.
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 Algebraic constructions, in general, result in mostly QC-
LDPC codes, espemally QC-LDPC codes whose parity-
check matrices are arrays of circulant permutation matrices
(CPMs) and/or zero matrices (ZMs).

o \We refer to this type of QC-LDPC codes as codes with
CPM-structure or CPM-QC-LDPC codes.

« QC-LDPC codes have advantages over other types of
LDPC codes in hardware implementations of encoding and
decoding.

« Encoding of a QC-LDPC code can be efficiently
Implemented using simple shift registers.
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e In hardware implementation of a QC-LDPC decoder, the
quasi-cyclic structure of the code simplifies the wire
routing for message passing.

o Well designed QC-LDPC codes perform as well as any
other types of LDPC codes in the waterfall region.

 All these advantages inevitably will make QC-LDPC codes
the mainstream LDPC codes for future applications in
communication and storage systems.

e Algebraic LDPC codes in general have lower error-floor
and their decoding converges faster than graph-theoretic-
based LDPC codes.
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QC-LDPC Code

« Let a be a primitive element of the field GF(27) = {0, 1, a,

a?, ..., at?®} which consist of 128 elements.

* For the following 6x127 matrix over GF(27):

‘1 a 6(2 CK126 ]
1 a? (@®)? - (a?)126
1 6(3 (a3)2 (6(3)126
B = 1 o (@h)? - (at)126
1 6(5 (6(5)2 (6(5)126
1 a® (ae)z (a6)126_



v\ 4

FIasIlMemory

* The base matrix B is the conventional parity-check matrix

of a cyclic (127, 121) Reed-Solomon code over GF%27)

whose generator polynomial has a, a?, a3, a*, a°, a® as

roots.

* Dispersing ecach entry m B by a 127x127 CPM, we
obtain a 127x127 array H of CPMs of size 127X127.

* Hisa762X%16129 matrix with column and row weight 6
and 127, respectively. The rank of this matrix 1s 757. H
has 5 redundant rows.

* The null space of H gives a (6, 127)-regular (16129,
15372) QC-LDPC code C with rate 0.953.

10
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e The Tanner graph ¢ of the code C has girth 6 and each
variable node of ¢ has a large degree of connectivity.

e @ has no small trapping set with size smaller than 11.

 With 50 iterations of the MSA, the code achieves a bit-
error rate (BER) of 10~ and a block-error rate (BLER) of
almost 10712 without visible error-floors

e The bit and block error performances of this QC-LDPC
code decoded with 5, 10, 50 iterations of the min-sum
algorithm (MSA) with a scaling factor 0.75 are shown in
Fig.1 (computed with an FPGA decoder).

11
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Figure 1: Performances of the (16129,15372) QC-LDPC code calculated by an FPGA decoder.
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ssues

Number of logic gates (or number of message processing
units);

 Number of wires connecting the message processing units;
e Memory requirement;
e Power consumption;

e Decoding latency.
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ashMemory \/|. Conclusion
« To construct LDPC codes with good waterfall error
performance and very low error-floor, algebraic

construction Is the way to go.

e A solution to the decoder implementation is the Merry-
Go-Round decoder architecture.

o This presentation is simply an academic point of view.
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