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History of Modern Codes

 Turbo Codes (1993)

 LDPC Codes (1996)

• Developed by Gallager in 1960

• PhD Thesis at MIT

• http://www.rle.mit.edu/rgallager/documents/ldpc.pdf

 LDPC Code Implementation

• Accepted for DVB-S2 in 2003

• Part of Wi-Fi 802.11n (optional) in 2009

• HDD- Marvel, LSI, BRCM etc put ASIC efforts in 2008

– Drives with LDPC codes shipped couple years later

– LDPC codes with 512B information size

– Marvel, LSI make channels with non-binary LDPC codes

http://www.rle.mit.edu/rgallager/documents/ldpc.pdf


ECC Evolution in Storage

 Hard Disk Drives
• Reed Solomon Codes

– Viterbi detector and burst errors due to defects 

• Binary LDPC Codes
– Soft information comes from SOVA

– Erasure decoding from media defects

• Non-Binary LDPC Codes

– GF(4), GF(8), GF(16)

 Solid State Drives
• Algebraic code

– BCH codes

• LDPC codes

– Binary LDPC codes

– Soft information limited by trigger rate



ECC Evolution in SSDs

 What’s next?

 Non-Binary LDPC Codes

• For HDD, there is inter-symbol-interference (ISI)

• ISI makes non-Binary LDPC codes suitable for HDD

 Polar Codes

• Recent results show they have potential



Non-Binary LDPC codes

 Instead of working on bits, non-binary LDPC 

codes work on groups of bits (called symbols)

 Symbols can be a set of 1,2, … 𝑞 bits

 Galois fields- 𝐺𝐹 22 , 𝐺𝐹 24 , … . . 𝐺𝐹(2𝑞)



Parity check matrix

 H-matrix of a binary vs non-binary LDPC code 

over GF(8)

 Type equation here.

All operations are over 𝐺𝐹(2𝑞)



Non-Binary LDPC code and its binary 

representation

 Any non-binary LDPC code can be represented 

by its binary equivalent

 Replace all the 𝐺𝐹(23) entries by their 3 x 3
binary equivalents



Why the difference then?

 Encoding/Decoding done in 𝐺𝐹(2𝑞)

 Message passing works on symbol basis

 All properties of the code are in that space

 Girth, distance properties

• Typically large girths with small column weights

 Binary representation helps with code 

construction



Why non-binary LDPC should perform 

better for SDD

 Hard disk drives

• Have ISI

 Even for AWGN channels, literature on non-

binary LDPC codes shows improved 

performance



Decoding non-binary LDPC codes

 Binary LDPC codes

• Min-Sum Decoder, 2-D Min-Sum Decoder

 Non-Binary LDPC codes

• Extended Min-Sum (EMS) decoder

 Message Passing Algorithms

• Probability domain

– Check node update in Fourier domain- FFT 

• Log domain



Decoding non-binary LDPC codes

 Log-density-ratios (LDR)

 𝐿𝐷𝑅 𝑠 = log
𝑝(𝑟|𝑠)

𝑝(𝑟|0)
, 𝑠 = 0,1, . . 2𝑞 − 1

 From 𝑟, compute the 𝐿𝐷𝑅 𝑠

 Message passing consists of updating the LDRs 

at the check and symbol nodes

 Introduce permutation nodes



Decoding Non-Binary LDPC codes

 Symbol flipping algorithm

• Bit flipping decoding for binary LDPC codes

 Min-max decoding

• Simplified decoding

 Trellis EMS algorithm

• Ideal for high throughput, high rate applications

• Memory requirements are huge



Simulation Results

 1KB LDPC codewords, soft decision decoding, 

simulation results at Intel- 1.53x RBER gain



Polar Codes- History

 Erdal Arikan- 2008

 Binary discrete memory-less channels (B-DMC)

 Capacity achieving codes with low encoding and 

decoding complexity- 𝑂(𝑁 𝑙𝑜𝑔𝑁)

 Minimum codeword size for channels to polarize

• 2K bits

 Successive cancellation decoding algorithm

 List Decoding with CRC- Tal & Vardy



Channel Polarization

 𝐼(𝑢1, 𝑢2;𝑦1, 𝑦2) = 𝐼(𝑢1; 𝑦1, 𝑦2) + 𝐼(𝑢2; 𝑦1, 𝑦2| 𝑢1)

=  𝐼(𝑢1; 𝑦1) + 𝐼(𝑢2; 𝑦2)

=  𝐼(𝑊) + 𝐼(𝑊) = 2𝐼(𝑊) 

 Synthesize two channels from two independent 

copies of DMC channels 𝑊

 The two channels have same symmetric 

capacity



Channel Polarization

 𝐼(𝑢1, 𝑢2;𝑦1, 𝑦2) = 𝐼(𝑢1; 𝑦1, 𝑦2) + 𝐼(𝑢2; 𝑦1, 𝑦2| 𝑢1)

= 𝐼(𝑊′) + 𝐼(𝑊′′) = 2𝐼(𝑊) 

𝐼(𝑊′) ≤ 𝐼(𝑊) ≤ 𝐼(𝑊′′)

 Created two channels

 One channel can have higher capacity than the 

other

 Total capacity of the two channels is unchanged



Channel Polarization- BEC

 𝑢1 is erased if either 𝑦1 or 𝑦2 is erased

 𝑢2 is erased if  both 𝑦1 or 𝑦2 are erased

 Probability of 𝑢1 erased is 2𝛿 1 − 𝛿 + 𝛿2

 Probability of 𝑢2 erased is 𝛿2

 𝛿=0.4, 𝐼(𝑊) =0.6 

 P(𝑢1 erased )=0.64, 𝐼(𝑊′)= 0.36 < 𝐼(𝑊)

 P(𝑢2 erased )=0.16, 𝐼(𝑊′′)=0.84 > 𝐼(𝑊)



Why channels polarize?

 Observe   𝑌1, 𝑌2

 𝑈1= 𝑋1 + 𝑋2

 𝑈2= 𝑋2; 𝑈2 = 𝑋1 + 𝑈1

+

Parity check node

𝑌2

𝑈1

𝑌1

+

Variable node

Repitition code

𝑈1+ 𝑌1

𝑈2

𝑌2



Polar Codes

 𝑚 = 2

 Recursive code construction

 Kronecker Product to get 𝑁 = 4



Codes from Kronecker Products of 𝑮𝟐



Reed-Muller Codes



Polar Codes



Frozen set

 Freeze the bits on the bad channel- Frozen set

 Useless Channels, asymptotically 

W𝑁
𝑖
𝑦1

𝑁, 𝑢1
𝑖−1 𝑢𝑖 = 0.5, 𝑢𝑖 = 0,1

 These indices 𝑖 are the ones which are channels 

with capacity 0 



Polar Codes

 Choice of frozen set

• RM- Choose the rows with maximum Hamming 

weight

• Bhattacharya parameter

 Only for code lengths which are powers of 2

• Shortening

• Other base matrices or combinations

 Decoding

• Successive Cancellation Decoding

• List Decoding + CRC

 Non-systematic codes

• Can we do systematic constructs?



Shortening Polar Codes

 Default length of polar codes is 2𝑞, for some 

integer 𝑞

 Is shortening possible*?

 Yes, since the generator matrix is a lower 

triangular matrix

 Hard decision decoding shows RBER advantage 

and quite some endurance benefit *

 * Yue Li et al, “The performance of Polar Codes for Multi-level Flash Memories,” NVM Workshop 

2014



List Decoding of Polar Codes with CRC

 List size has to be at least 32 or more

 Decoder memory impact since we need to store 

n codewords in the list

 Not as amenable to decoding as LDPC codes

 Multiple rate constructs difficult



Conclusions

 Non-Binary LDPC codes are an appropriate 

future generation choice

 Polar codes competing with non-binary LDPC 

codes?

• Not beating non-binary LDPC codes on RBER

• Polar codes not as amenable to decoding as non-

binary LDPC codes

• Variable rate constructs not as easy as LDPC

• List size is large which has SRAM cost downsides


