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I. Performance of an LDPC Code 
• The performance of an LDPC code with iterative decoding 

is measured by: 
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1. The error performance (or coding gain or how 
close to the Shannon limit), 

2. The rate of decoding convergence (how fast the 
decoding process terminates), 

3. Error-floor (how low the error rate can achieve). 
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II. Performance Factors 

• The performance of an LDPC code is determined by a 
number of structural properties collectively: 
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1. Minimum distance (or minimum weight); 
2. Girth of its Tanner graph; 

3. Cycle distribution of its Tanner graph;  

4. Connectivity; 
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• No single structural property dominates the performance 
of a code. 
 

• It is still unknown how the code performance depends on 
the above structural properties analytically as a function. 

5. Trapping set configurations and distribution of its 
Tanner graph; 

6. Degree distributions of variable and check nodes of 
its Tanner graph; 

7. Row redundancy of the parity-check matrix, 

8. Other unknown structures 



III. Categories of Constructions 

• Major methods  for constructing  LDPC codes can be 
divided into two general categories: 
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• Most well known graph-theoretic-based construction 
methods are PEG (progressive edge growing) and 
protograph-based methods. 
 

• Algebraic constructions of LDPC codes are mainly based 
on finite fields, finite geometries, and combinatorial 
designs. 

1.  graph-theoretic-based constructions 
2.  algebraic-based methods 
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• Algebraic constructions, in general, result in mostly QC-
LDPC codes, especially QC-LDPC codes whose parity-
check matrices are arrays of circulant permutation matrices  
(CPMs)  and/or zero matrices (ZMs). 
 

• We refer to this type of QC-LDPC codes as codes with 
CPM-structure  or CPM-QC-LDPC codes. 
 

• QC-LDPC codes have advantages  over other  types  of 
LDPC codes in hardware implementations of encoding and 
decoding. 
 

• Encoding of a QC-LDPC code can be efficiently 
implemented using simple shift registers. 
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• In hardware implementation of a QC-LDPC decoder, the 
quasi-cyclic structure of the code simplifies the wire 
routing for message passing. 
 

• Well designed QC-LDPC codes perform as well as any 
other types of LDPC codes in the waterfall region. 
 

• All these advantages inevitably will make QC-LDPC codes 
the mainstream LDPC codes for future applications in 
communication and storage systems. 
 

• Algebraic LDPC codes in general have lower error-floor 
and their decoding converges faster than graph-theoretic-
based  LDPC codes. 



IV. A Very Low Error-Floor RS-Based 
     QC-LDPC Code 
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• The Tanner graph G of the code C has girth 6 and each 
variable node of G has a large degree of connectivity. 
 

• G has no small trapping set with size smaller than 11. 
 

• With 50 iterations  of the MSA, the code achieves a bit-
error rate (BER) of 10−15  and a block-error rate (BLER) of 
almost 10−12  without visible error-floors 
 

• The bit and block error performances of this QC-LDPC 
code decoded with 5,  10,  50 iterations  of the  min-sum 
algorithm (MSA) with a scaling factor 0.75 are shown in 
Fig.1 (computed with an FPGA decoder).  
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Figure  1:  Performances of the  (16129,15372) QC-LDPC  code  calculated by an  FPGA decoder. 



V. Important  Decoder Implementation 
    Issues 

• Number of logic gates (or number of message processing 
units); 
 

• Number of wires connecting the message processing  units; 
 

• Memory requirement; 
 

• Power consumption; 
 

• Decoding latency. 
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VI. Conclusion 

• To construct LDPC codes with good waterfall error 
performance and very low error-floor, algebraic 
construction  is the way to go. 
 

• A solution to the decoder implementation is the Merry- 
Go-Round decoder architecture. 
 

• This presentation is simply an academic point of view. 
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Thank you! 
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