

Selecting the Right Enterprise SSD

Part I – Overview

Kent Smith
Sr. Director Outbound Marketing
and Performance Analysis, LSI®

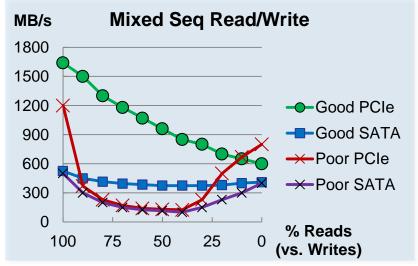
Memory SSD Selection Criteria

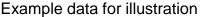
- Primary or caching storage
- Performance
- Endurance (P/E cycles)
- Capacity
- Cost
- Power
- Thermal
- Security
- Warranty / Quality / Reputation
- Interface
- Form factor (shape / size)

Primary or Caching Storage

	Primary Storage	Caching Storage
Description	Data held across power cycles	Data held temporarily to accelerate CPU access to more frequently requested data from longer term storage
Capacity required	Laptop: All user data must fit Desktop: Boot OS must fit	Larger size ≈ more acceleration
Persistence	Yes, even w/o power	Only with power
Compatibility	Universal to all systems	OS or app knowledge required

Performance


Identify application requirements:


- Minimum sequential MB/s
- Minimum random IOPS
- Maximum latency (ms)

Understand true performance

- Look for mixed reads/writes and mixed random/sequential measurements
- Avoid the bathtub curve

Endurance (P/E Cycles)

- Flash has a limited number of program/erase cycles
 - Data reduction technologies (like LSI DuraWrite™) can mitigate this
- Manufacturers spec how many times you can write the full capacity of the drive in a day
- Ensure the expected writes per day are within the requirements
 - Or accept the SSD will wear out before the warranty period

Higher capacity offers longer endurance for the same amount of data written

Physical Capacity * Flash P/E Cycles = Total Writable Bytes

256GB * 3K = 768TB written

128GB * 3K = 384TB written

 Single drive bay systems should get the highest capacity available that meets the selection criteria

 Multiple bay systems can keep hot/critical/boot data on the SSD and cold data on the HDD

Small amount of hot data

Large amount of cold data

Cost

- HW cost primarily driven by the flash memory
 - Bits per cell (TLC < MLC < SLC)
 - Geometry (16nm < 20nm < 24nm, etc.)
 - Quantity of flash (capacity)
- Other HW costs (like FPGA vs custom ASICs)
- SW cost (if applicable) based on capability
 - Virtualization
 - Host caching management
 - Etc.

Power

- Higher performance often equates to higher power draw
 - Data reduction technologies can mitigate this
- Multi-drive configurations must account for maximum potential draw from all drives
- DevSleep now enables some SSDs to get to SUPER low power when idle

sh Memory Thermal

 Enclosed SSDs (cases) generally designed for minimal airflow

- Open designs expect some flow
 - Smaller boards have less natural heat dissipation

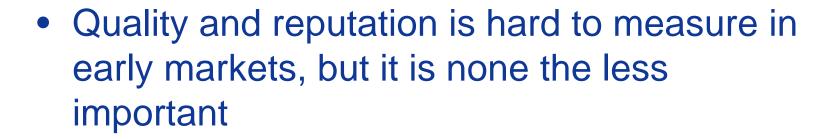
 Client OEM systems account for heat dissipation with airflow or through mounting brackets or thermal transfer materials

High-density custom configurations must consider air flow

Security

A few options available if necessary

- BIOS level ATA Security (client oriented)
- Self-encrypting drives (SED)
 - AES-256
 - AES-128
- Trusted Computing Group (TCG) standards
 - TCG Enterprise
 - TCG Opal (client)
 - eDrive
- Federal Information Processing Standards (FIPS)
 - FIPS 140-2



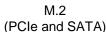
Warranty / Quality / Reputation

Ranges typically between 3-5 years

Interface

- Options include:
 - SATA, PCIe, SAS, USB, other
- Is the interface already set and cannot be changed?
- Will the interface support the performance?
- Will the interface support the form factor?

Common SSD Interfaces


SATA (& SAS)

PCIe card

USB

Example Connector Variations

SATA Express (PCIe and SATA)

Form Factor (Shape / Size)

 HDD shapes were based on the rotating platter(s) and head stack assembly

 Primary SSD components are the flash chips; orientation of these chips is virtually unlimited

 Initial SSD market expansion was mainly using the HDD form factor

Form Factors (examples)

1.8" Standard HDD form factors

SFF-8223

MO-297

MO-300 Custom mSATA

PCIe card

USB

Custom configurations

Apple custom connectors 2010-2012 (SATA), 2013 (PCIe)

M.2 (22x80) (PCIe and SATA)

SSD Selection Overview – Key Takeaways

- Selection criteria is more than just performance
- Prioritize the criteria in case of conflicting combinations, e.g., power budget over capacity
- SSD form factors are not limited like HDDs

LSI® SandForce® Flash Controller Expertise That Exceeds

- Visit us at booth #404
 - Market-leading read/write sequential PCIe performance hitting 1,300MB/s
 - Award winning SATA controllers with latest flash
 - Enter to win SandForce Driven SSDs from Adata, Intel, Mushkin and Kingston

 See 3x Super Bowl winner Bubba Paris in-person autographing photos and commemorative footballs

Follow LSI SandForce

LSI, the LSI & Design logo, DuraWrite, SandForce and SandForce Driven are the trademarks or registered trademarks of LSI Corporation in the United States and/or other countries. All other brand or product names may be trademarks or registered trademarks of their respective companies.