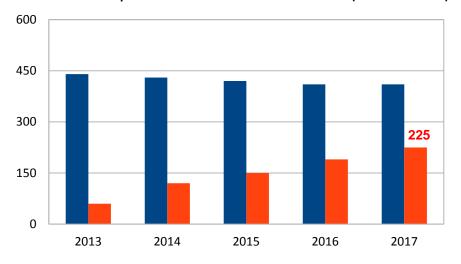


Recent Advances in Analytical Modeling of SSD Garbage Collection

Jianwen Zhu, Yue Yang
Electrical and Computer Engineering
University of Toronto



- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion

Flash Market

Worldwide Shipment Forecast for SSDs and HDDs in PCs (Millions of units)

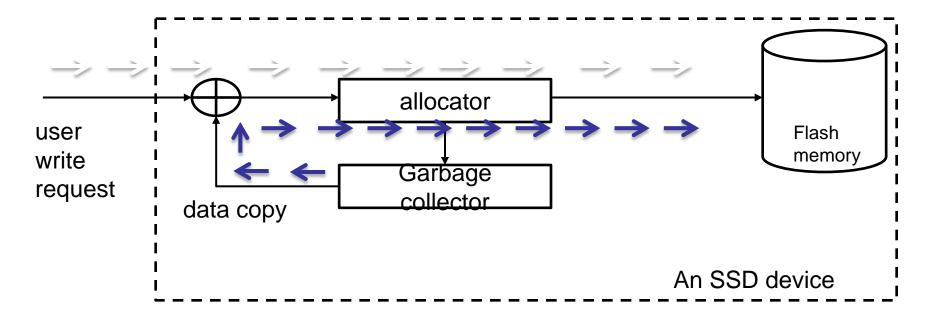
Source: IHS iSuppli Storage Market Tracker Report, May 2013

HDD

SSD

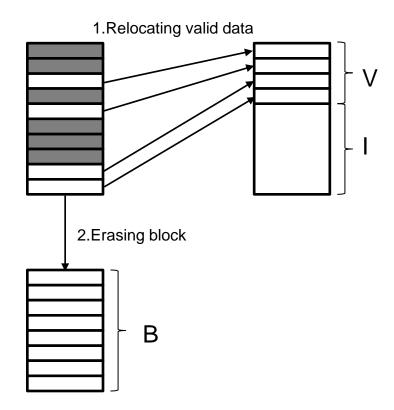
Memory Flash Advantage

- Access latency
- Bandwidth
- Data safety
- Power efficiency
- Noise


- Endurance
 - limited budget of erase cycles (1K 100K)
 - "erase-before-write" limitation

Question: How long will an SSD device last?
 (how many user write requests can be serviced?)

Flash Memory Write Amplification



Garbage Collection

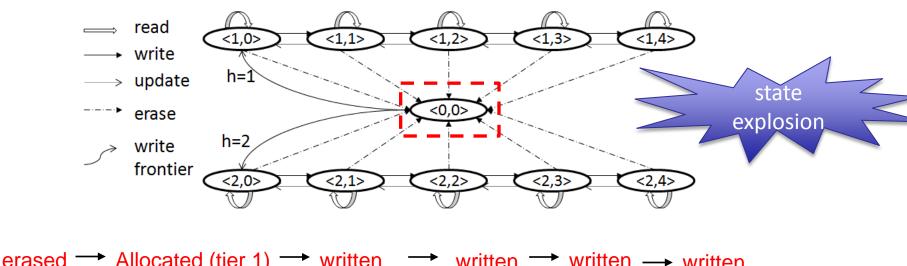
- Cleaning process
 - trigger condition
 - victim block selection
 - valid data migration
 (source of write amplification)
 - victim block erase

Write amplification

$$A = \frac{B}{I} = \frac{B}{B - \overline{V}}$$

Flash Memory Analytical Modeling: Advances

Framework	Workload model	Hotness separation	GC selection algorithm	Trace- driven validation
Bux (Perf.Eval'10)	Uniform	no	greedy	no
Houdt, (SIGMETRICS'13)	Uniform	no	d-Choice	no
Houdt, (Perf.Eval'13)	Hyper-exponential	no	d-Choice	no
Desnoyers, (SYSTOR'12)	Hyper-exponential	yes	greedy	yes
Li, (SIGMETRICS'13)	Poisson	no	d-Choice	yes
Yang/Zhu (MSST'14)	General	yes	d-Choice	yes



- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion

Memory Life of an Erase Block

- Type of a <u>single</u> block <h,v>
 - h: the hotness tier that the block is allocated for
 - v: the number of valid pages in the block

erased → Allocated (tier 1) → written → written → written ↓

..... Allocated (tier ← erased ← updated 2)

Memory System Dynamics

- State descriptor: occupancy measure vector \vec{m}
 - element: fraction of block type <h,v>
 - ullet Cardinality of $ec{m}: |\mathcal{H}| imes |\mathcal{B}| + 1$

v=0

0

V = 1

v=2

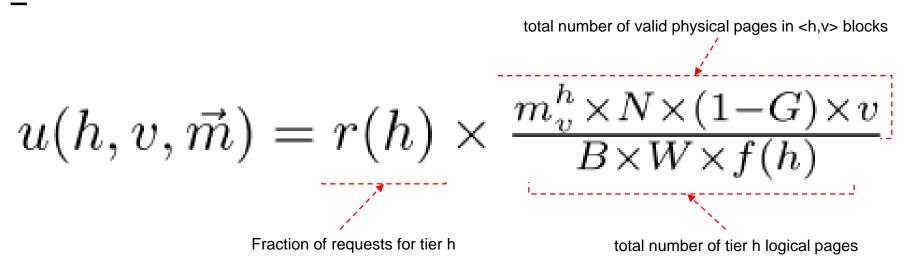
v=3

V = 4

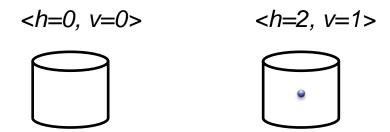
h = 1

h =0

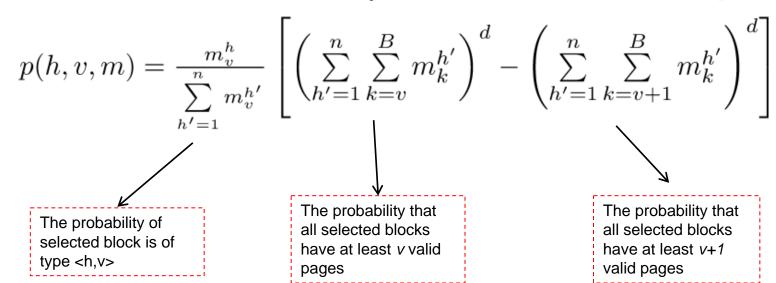
h =2



External Write Requests


$$v=0$$
 $v=1$ $v=2$ $v=3$ $v=4$

P[a valid page in a < h, v > block is updated by an external write]

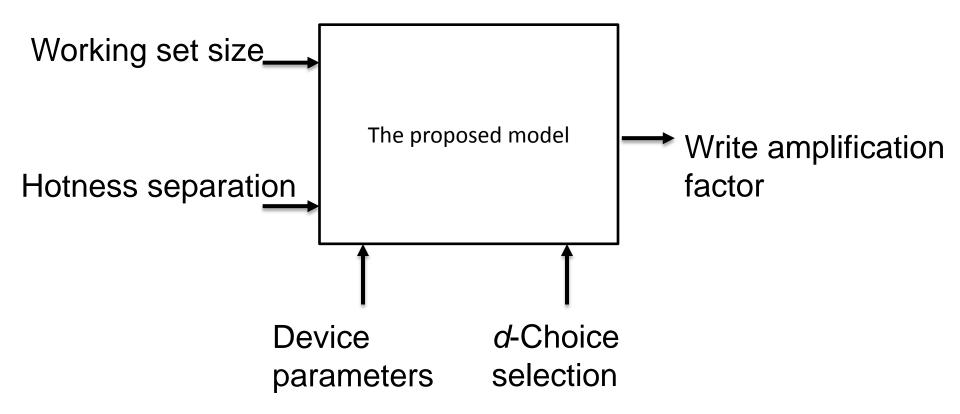


Block Erase

P[a < h, v > block is chosen by d-Choice as the victim] =

Memory A System of ODEs

For
$$0 \le v \le B$$
 and $1 \le h \le n$, let $g_v^h = \sum_{k=v}^B m_k^h$,

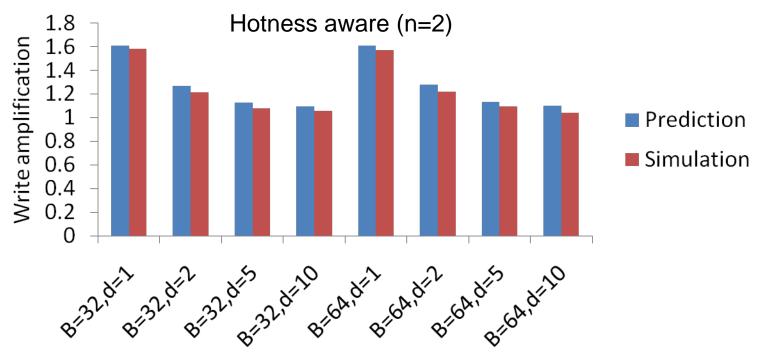

$$\Delta \underbrace{\begin{pmatrix} g_v^h \\ g_v^h \end{pmatrix}}_{\text{increment rate of } Q_v^h} = \sum_{k=0}^{v-1} p(h, k, \vec{m}) - \left[B - \sum_{v=1}^B \left(\sum_{h'=1}^n g_v^{h'} \right)^d \right] \times u(h, v, \vec{m})$$
increment rate of Q_v^h decrement rate of Q_v^h

Mean field analysis & rescaling

[1] Van Houdt, Benny. A Mean Field Model for a Class of Garbage Collection Algorithms in Flash-based Solid State Drives, sigmetric'13

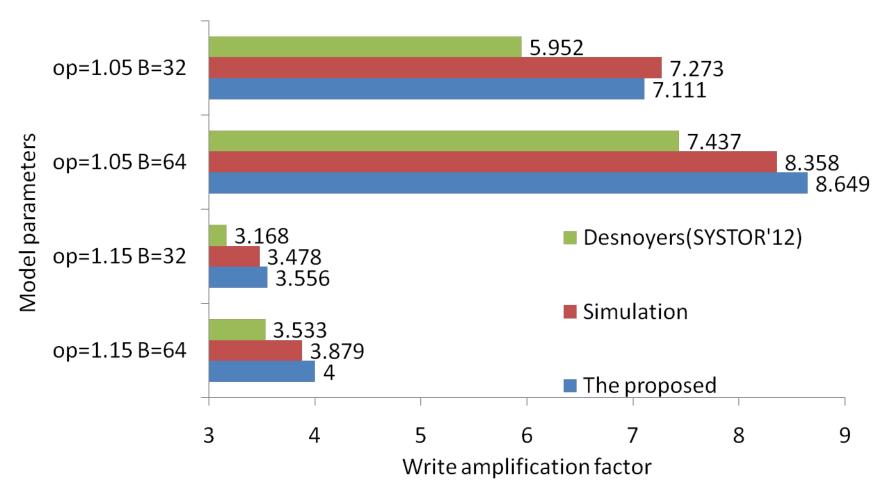
Model Input / Output

- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion


- The simulator
 - terabyte scale
 - highly configurable
 - trace-driven
- Run-time behavior
 - warm-up
 - statistics collection

- FileBench synthetic traces
 - fileserver
 - OLTP
 - mail server
 - video server
 - web proxy
 - web server
- Real traces
 - OLTP application from a financial institution
 - Hardware monitor server in MS research, Cambridge

Model Prediction vs Simulation



Design parameters

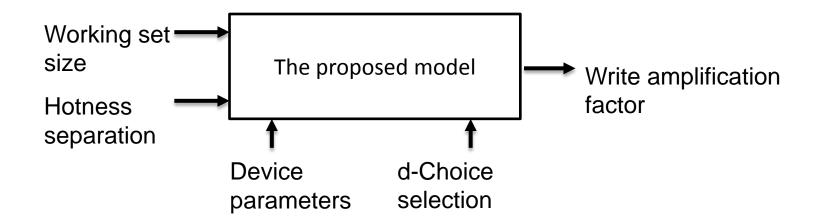
Financial trace 2
-- Storage Performance Council. OLTP Application I/O. http://traces.cs.umass.edu/index.php/Storage/Storage, 2002.

Improvements

Write amplification prediction for greedy GC algorithm and hotness awareness.

sh Memory Regression

Hotness unaware write amplifications Block size = 64


d	over- provisioning	The proposed	Houdt (SIGMETRICS'13
2	1.07	9.63	9.64
4	1.07	7.72	7.72
8	1.07	7.00	7.00
2	1.16	4.96	4.96
4	1.16	4.08	4.07
8	1.16	3.73	3.74
2	1.26	3.37	3.37
4	1.26	2.80	2.80
8	1.26	2.59	2.59

- Introduction & motivation
- Analytical modeling
- Model validation
- Conclusion

- Analytical Model
 - a general workload model
 - a wider class of selection algorithms
 - a write-frontier based hotness separation scheme

