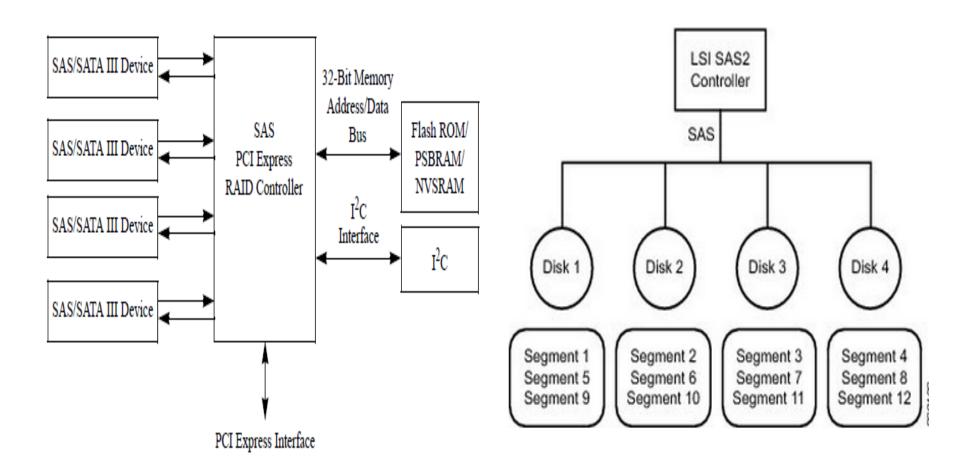


High Density SSD Structure with RAID

Sage Microelectronics Corp Chris Tsu

Concept

- RAID is originally redundant array of inexpensive disks
- Now commonly redundant array of independent disks) is a data <u>storage virtualization</u> technology that combines multiple <u>disk drive</u> to a logical unit
- For the purposes of data redundancy or performance improvement



Benefit

- Emphasis on inexpensive but reliable then disks RAID
 - Back to original concept
- Shield from flash vendor secret backdoor
 - No worry of undocumented scramble techniques
 - Isolate from LDPC/BCH ecc etc
- Time to the market
 - In sync with flash vendor's technologies
 - Ever need early involvement

HD RAID

Flash vs HD

Characteristic	ISK HDD	NAND Flash	Improvement
Performance	250 IOps	30,000 IOps	86X greater
Latency	10 ms	0.3 ms	30X faster
Reliability (MTBF)	I.2 M Hours	2.0 M Hours	67% greater
RAID Rebuild Times	10-20 Hours	0.3-0.5 Hours	40X faster
Power (Watts per TB)	30	5	83% lower
Efficiency (I/O per watt)	15K HDD	6,500	433X higher

•But Flash need to deal with wearing and ECC, HD does not as eMMC

eMMC + Striping

- Sandisk eMMC 4.51
 - ■Interface HS200 (200 MB/sec)
 - Sustain read/write (150/45MB/s)
 - •4KB random read/write(4k/800 IOPS)
- Samsung Ultra Fast eMMC 5.0
 - ■Interface HS400 (400 MB/sec)
 - Sustain read/write (250/90MB/s)
 - •4KB(?) random read/write(7k/7K IOPS)
- •Use striping (RAID 0) to boost the performance

RAS

- Reliability
 - Single device wear leveling is solved by eMMC
 - Global wear leveling is done by cluster ASIC
 - SMART alike will be achieved by vendor command
 - •RAID 10, 50, 60 can be easily implement
- Availability
 - eMMC is a JEDEC standard like SDDR
- Serviceability
 - Modula design with current MMC housing

Challenge

- Electronic challenge
 - Power interrupt reliability
 - No control of Flash type of the shelf
 - ■Today's eMMC are generally used MLC(3K), SLC (100K) or eMLC(30K) are rarely to find
 - SMART like command is not a standard for eMMC
- Mechanical challenge
 - •Hot wrap mechanism reliability
 - As speed increase, MMC housing is not the best solution, vibration is also an issue

ASIC Schedule

- •SATA version of eMMC bridges are available
- •PCIe FPGA Proto type done As July 1st, 2014
- •First version ASIC with be single line PCIe 2.0 RAID 0, 1, 5
- •First Silicon 4Q14