
Using Memory-Tier NAND Flash to Accelerate
In-Memory Database Transaction Logging

Presented by Steve Graves, McObject

Flash Memory Summit 2014
Santa Clara, CA

1

In-Memory Database
System (IMDS)

• Definition: database management system that stores
all records in main memory

• Contrast to traditional DBMSs premised on disk
storage for all data

• IMDSs eliminate
• Disk and file I/O
• Cache processing
• Data transfer

• Result: IMDSs perform orders of magnitude faster
• Increasingly popular for business analytics, telecom,

capital markets, industrial control and more
Flash Memory Summit 2014
Santa Clara, CA

2

IMDSs, Volatility &
Transaction Logging

• DRAM’s volatility is viewed as an IMDS disadvantage
– how can an IMDS gain data durability?

• Transaction Logging provided in most IMDS products
• Logging enables recovery of committed transactions in the

event of system failure
• Objection: this re-introduces writes to persistent storage

Flash Memory Summit 2014
Santa Clara, CA

3

McObject’s benchmark tests addressed the question,
“Will an IMDS with transaction logging still outperform
a traditional “on-disk” DBMS?” and measured the
performance impact of different storage technologies

Benchmark Tests
• Performance measured for database inserts,

updates, deletes, index searches & table traversals
• Across different storage technologies:

• Hard disk (Western Digital VelociRaptor, 600 GB)
• SSD (SanDisk Extreme Solid State Drive, 240 GB)
• Memory-tier NAND flash (Fusion-io ioDrive2)

• Database systems compared:
• eXtremeDB In-Memory Database System (w/ transaction

logging feature enabled)
• eXtremeDB Fusion on-disk DBMS

• Dell PowerEdge T110 Tower Server with 4GB of
1333 mhz memory
 Flash Memory Summit 2014

Santa Clara, CA

4

Test Results
• Database index searches & table traversals

• Minimal impact on performance when moving from on-disk
DBMS to IMDS w/ transaction logging (IMDS+TL), or when
changing storage device

• These database “reads” are typically much less costly, in
performance terms, than writes (inserts, updates & deletes)

• Ample system memory ensured that most read requests
resulted in DBMS cache hits

• Database inserts, updates and deletes
• A completely different story: Database system and

storage type resulted in dramatic differences in
performance, ranging as high as 2,300%

Flash Memory Summit 2014
Santa Clara, CA

5

Test Results: DBMS & IMDS+TL Writes

Flash Memory Summit 2014
Santa Clara, CA

6

Insert Loops/ms Perf. Multiple
HDD – On-disk 1.60 1.00
HDD – IMDS+TL 5.11 3.20
SSD – IMDS+TL 15.49 9.69
ioDrive2 – IMDS+TL 32.05 20.05

Update Loops/ms Perf. Multiple
HDD – On-Disk 3.00 1.00
HDD – IMDS+TL 5.32 1.77
SSD – IMDS+TL 17.30 5.77
ioDrive2 – IMDS+TL 38.25 12.75

Delete Loops/ms Perf. Multiple
HDD – On-Disk 1.50 1.00
HDD – IMDS+TL 5.31 3.55
SSD – IMDS+TL 17.77 11.87
ioDrive2 – IMDS+TL 34.72 23.19

Test Results, Cont.
Red = Entire Database Stored on SSD or ioDrive2

Flash Memory Summit 2014
Santa Clara, CA

7

Insert Loops/ms Perf. Multiple
SSD – On-Disk 3.00 1.88
ioDrive2 – On-Disk 6.12 3.83
HDD – IMDS+TL 5.11 3.20
SSD – IMDS+TL 15.49 9.69
ioDrive2 – IMDS+TL 32.05 20.04
Update Loops/ms Perf. Multiple
SSD – On-Disk 7.23 2.41
ioDrive2 – On-Disk 15.99 5.33
HDD – IMDS+TL 5.32 1.77
SSD – IMDS+TL 17.30 5.77
ioDrive2 – IMDS+TL 38.25 12.75
Delete Loops/ms Perf. Multiple
SSD – On-Disk 2.98 1.99
ioDrive2 – On-disk 6.17 4.12
HDD – IMDS+TL 5.31 3.55
SSD – IMDS+TL 17.77 11.87
ioDrive2 – IMDS+TL 34.72 23.19

Why Is IMDS w/ Transaction Logging
Faster Than On-Disk DBMS?

• On-disk DBMSs’ caching sub-system imposes
performance overhead; an IMDS (with or without
transaction logging) eliminates caching

• Widely used B-tree indexes accelerate some reads
but are expensive for an on-disk DBMS to maintain
during inserts/updates/deletes
• B-tree overhead grows as database size increases
• B-tree lookups are less costly with an IMDS: they impose no

cache processing, happen at in-memory speed, and trees
are shallower because they contain no duplicate index data

• Sequential writes (logging) vs. writes to random disk
locations (on-disk DBMS writing through cache)
 Flash Memory Summit 2014

Santa Clara, CA

8

Discussion
• In-memory database system (IMDS) use is growing;

some applications will require maximum speed and data
durability

• Memory channel NAND flash greatly enhances
performance of the most common IMDS data durability
mechanism, transaction logging
• Accelerated database writes by approximately 600%

- 700% compared to hard disk transaction log
storage

• Could store on-disk DBMS on memory channel NAND
flash or SSD, but IMDS+TL is faster (4.42x on average
for writes w/ memory channel NAND flash)

Flash Memory Summit 2014
Santa Clara, CA

9

	Using Memory-Tier NAND Flash to Accelerate In-Memory Database Transaction Logging
	In-Memory Database System (IMDS)
	IMDSs, Volatility & Transaction Logging
	Benchmark Tests
	Test Results
	Test Results: DBMS & IMDS+TL Writes
	Test Results, Cont.�Red = Entire Database Stored on SSD or ioDrive2
	Why Is IMDS w/ Transaction Logging�Faster Than On-Disk DBMS?
	Discussion

