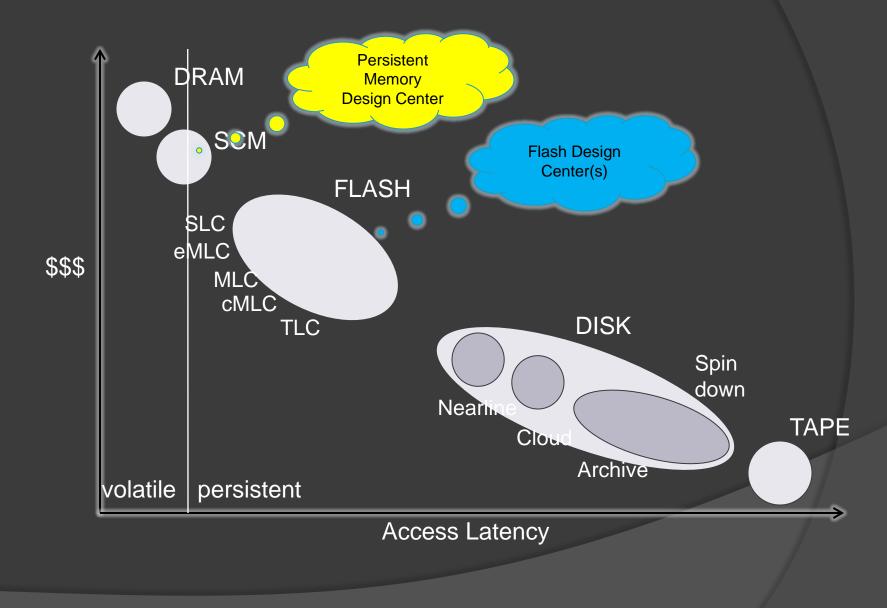
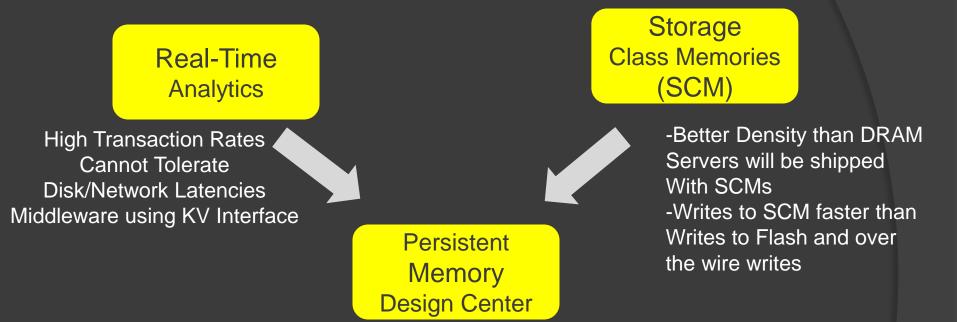

FLASH MEMORY SUMMIT

PERSISTENT MEMORY APPLICATIONS TRACK AUGUST, 2014


Kaladhar Voruganti Senior Technical Director NetApp, CTO Office

© 2014, NetApp , All Rights Reserved



Talk Focus: Persistent Memory Design Center

Confluence of Trends

Primary Data Management Moving to Host (Key Control Point)

Real-Time Analytics Applications

Applications	Characteristics	Middleware	Products		
Reservation Banking Financial	 Moderate Transaction Rate ACID Batch OLAP Queries on copy of data Moderate amount of data 	SQL	DB2, Oracle, SQLServer		
Document Systems, User Preference Data Machine Generated Logs/Data	 Eventual Consistency Very large amount of data Key-Value Access Model Both Batch/Real-time queries 	NoSQL	Hbase, Cassandra CouchDB MongoDB		
Supply-Chain Apps Fraud Detection Stock Trading Mobile Location Services	3 Mostly ACID Semantics		NuoDB,MemSQL, SQLFire, VoltDB SAP Hana, Oracle TimesTen		

Different Types of Persistent Memory

	PCM	STT-MRAM	ReRAM /Memristor	N-RAM (Nantero)	DRAM	NAND (SLC/MLC) 2D-planar
Storage Mechanism	Phase change – amorphous and crystalline	Magnetization of ferromagnetic layer	I on transport and redox reactions	Carbon nanotube- based resistance change elements	Charge on a capacitor	Floating Gate
Feature Size F	45nm	65 nm	30nm	22.nm	36nm	22.nm
Cell Size	4.8F ²	20 F ² [14 F ² (54n m) (Grandis)]	4 F ²	6F ²	6 F ²	4 F² /2 F²
Read latency	12 ns	tor Endurance 8 Sr	10 ns	50us/100us		
Write / Erase latency	Better Endurance & Speeds than Flash Byte Addressable				10 ns	500us/1m s
Write endurance	1E9	1112		>169	1E16	1E 5/ 1E 4
Data Retention	>10yrs	>10 yrs	> 10 yrs	>10yrs	64 ms	>10 yrs (Fn of writes)
Write Voltage (V)	з	1.8	0.6	3.5	2.5	15
Read Voltage (V)	12				1.8	1.8
Write Energy (pJ/bit)	Lov	ver speeds but bette DRAN	4E-15	2E-9		
Idle Power					Med. (refresh)	Low
MLC (bits/cell)	2	Difficult	pated	Possible		2/3 (max till 4)
3D solution	Possible	At higher cost (vertical MOSFET)	Feasible at higher cost	2	Hybrid Memory Cube applies TSV	3D (yes)
Scalability Prospects	F < 10nm	F = 10-45nm	F < 10nm	F < 5nm	F=10nm	F = 10nm
Addressability	byte	byte	2	?	byte	Page (r/w) Block (erase)

Two Persistent Memory Design Centers

Transparent

© 2014, NetApp , All Rights Reserved

"Transparent" NVM Adoption Drivers

- SCM/NVM treated as storage or DRAM
- Every app benefits from 'faster flash'
- Every app benefits from more 'memory'
 DRAM cache in front of SCM
- Likely that mobile use cases will drive cost of SCM technologies down

"Transparent" NVM Applications

Application characteristics

- Memory-based or Flash-based today
- Real-time latency / Hi Tx rate Databases
- Performance at any cost

Current Design Center

- POSIX Access Model
- Disk Optimized data structures (e.g. Column store) try to localize updates
- Coarse Grained file/LUN/Volume level Snapshots
- Coarse Grained SLOs (File, LUN/Volume) [specified out of band]
- Replication needed for both durability and HA
- Client-Network Storage Server Model

Persistent Memory Design Center

- Fine-grained Load/Store Access From User Space
- Processor Optimized Graph Data Structures that don't try to localize updates
- Data Structure level Versioning and recovery
- Data Structure level SLOs [specified in-band]
- Replication need for HA
- Peer to Peer Storage Model will gain traction

"Disruptive" NVM Applications

- Memory-based or Flash-based today
- Real-time latency / Hi Tx rate
- Larger datasets than today's in-memory apps
- Apps that need zero downtime and instant recovery

Disruptive NVM Applications

Medical/Wearable/Embedded

Conclusion: Asks

- Need end to end solutions (i.e. cannot develop persistent memory design center in isolation)
 - Need to move checkpoints, versions to capacity storage
- Need New Hardware Service Models
- Need data structure level management semantic standards (e.g. persistence, consistency, SLOs)
- Need Rapid Re-Build Algorithms from slower media during failures