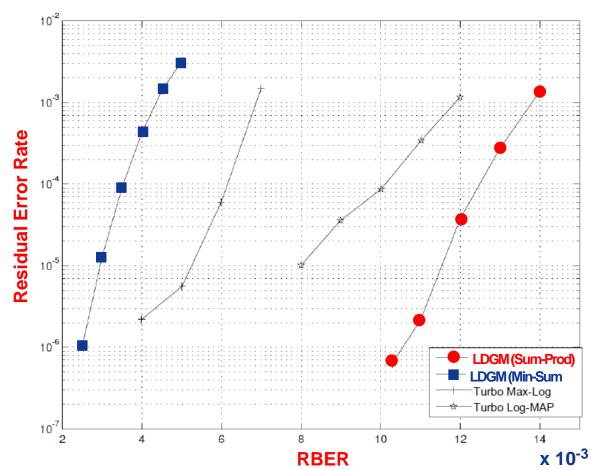

Reliable Flash Management and Error Correction

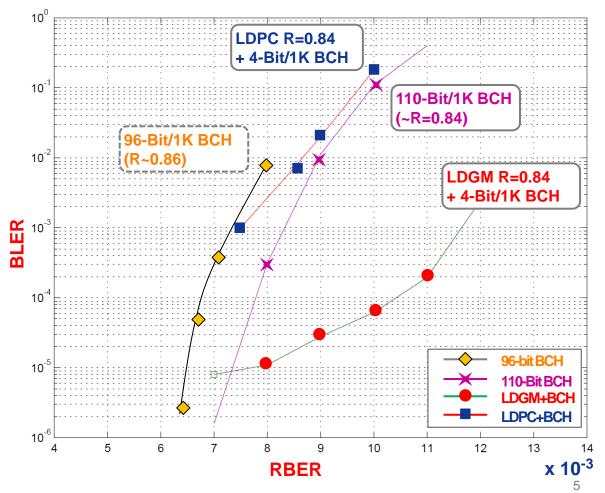
Evaluating different ECCs

Axel Mehnert VP Marketing

Flash Memory Summit 2014 Santa Clara, CA



- UBER is not an adequate quality measure BLER is
- Because of the error floor, LDPC codes require an additional outer code
- For the inner code performance we used the term Residual Error Rate
- Low-density generator matrix (LDGM) code used for comparison (lower encoding complexity, better correction quality with outer code)



- LDPC codes require knowledge of the actual RBER
- Min-Sum decoding correction quality relatively poor
- Sum-Product decoding assumes perfect knowledge of RBER
- This may be unrealistic over the lifetime of NAND

- LDGM/LDPC with an outer code compared to BCH
- LDPC requires simulation, BCH can be calculated
- For very high RBER, LDGM/LDPC could be superior
- But how flexible or adaptable could this be in practice?

• Main finding: LDPC code's burstiness

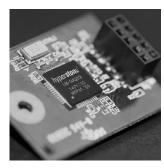
Number of errors per block after decoding of the inner LDGM code

RBER	0	1	2	3	4	5	6	7	8	9	10	12	14	42	46	62	68	118
0.010	498404	1497	65	3	1	1	3	3	16	1	0	1	0	1	1	1	1	1
0.008	4993813	5965	167	2	1	2	11	13	24	0	1	0	1	0	0	0	0	0
Binomial	4993603	6393	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Theoretical model (Binomial distribution, p=0.008): No residual errors beyond 2-Bit i.e. Block Error threshold for an outer 4-Bit BCH

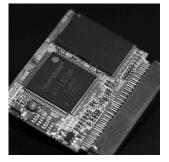
BLER: (For RBER 8 x 10⁻³ LDGM+4-Bit BCH) ~ 1x10⁻⁵

- Conclusion: Reliably calculating a BLER and quantifying correction quality requires BCH codes
- LDPC error floor leads to residual errors after outer BCH decoding
- Under the conditions we investigated, LDPC codes outperformed BCH codes only under ideal conditions and only for very high RBER (>1%)
- For LDPC based ECCs it is difficult to prove a BLER of better than 10⁻¹¹ because of simulation complexity


- BCH better suited considering:
 - Multi-generation and multi-technology Flash support
 - Widely varying environmental and temperature conditions
 - Correction quality and zero tolerance to delivering wrong results
 - Considerable correction speed and read latency
 - Power consumption
 - Robustness at the end of a NAND Flash Life
- BCH allows calculating a BLER based on any given RBER
 - For a RBER of 4 x 10^{-3} our 96-Bit/1K BCH achieves a BLER = 10^{-16}
- BCH complexity and gate count increases significantly with correction strength but it's a price worth paying

Background functions need low-power & fast ECC

- Near-Miss ECC
- Dynamic Data Refresh
- SMART Data output



U8 – USB

S8 – SD/eMMC

A2 – SATA

Flash Memory Summit 2014 Santa Clara, CA

Reliable Flash Management and Error Correction

Thank You!

Axel Mehnert

Flash Memory Summit 2014 Santa Clara, CA