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* With scaling of flash geometries, stronger ECC
needed to enhance reliability especially for enabling
MLC and TLC

 BCH codes provide guaranteed error-correction of t
but operate with only hard-decision decoding.

 LDPC codes emerging as strong candidates as they
can provide much higher reliability by using soft-
Information.
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Bit 1 : Bit 0 Biti1 : : EBitEO
0 -T,-T; O T, T,
Hard-decision:1 read Soft-decision: Multiple reads

Higher precision in soft-information requires more
number of reads which add to the read latency
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 Messages passed on the
Tanner graph between
variable nodes and checks
nodes

« Messages are (quantized)
Example of a Tanner graph log-likelihood ratios (LLRS)

« Each variable node receives
an LLR from the channel
referred to as channel value
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FlaSJIMemory Lingering Issues and Challenges
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* Very high code-rates (6-10% redundancy).

« Design of good quasi-cyclic codes for code lengths
1KB, 2KB, 4KB and higher.

* Very low error-rate requirements (UBER ~10-1°)
which makes error floor problem significant.

* Need for low-complexity low-power decoders.

« Using lower precision in soft-information to improve
read latency.
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 Message-passing based on Belief Propagation (BP)
or its low-complexity variants

« Variable node update: Sum the incoming extrinsic
messages and the channel value, and quantize
(typically need 5-6 bits of precision)

* Check node update:

= Sign Operation: Product of signs of incoming extrinsic
messages

= Magnitude Operation: Find minimum and second
minimum of incoming extrinsic messages and apply
scaling factor
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* Finite Alphabet Iterative decoding (FAID): Different
from Belief Propagation or min-sum-based decoders

 Messages are binary vectors belonging to a small
finite alphabet represented as levels O, +L,, +L,, etc.

« Size of alphabet is determined by the precision. For
3-bit precision, there are 7 levels.

* Outperforms floating-point BP in error floor with hard-
decision (past result) as well as with 2-bit precision
soft-information (new result)
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 Y={-C,+C}, Is the set of possible channel values.

* The variable node update ¢, is a (d,-1)-dimensional
map or look-up table (LUT), where d, is the column-
weight.

« Ford,=3,itisa 2D LUT. For d,=4,itisa 3D LUT.

my/mg | —Ls | =Lz | =Ly | 0 | +Ly | +La | +L3g
—Ls —Lg | —Ls | —L3 | —Lsg | =L | —L3 | —In
—L, —Ls | —Ls | =Lz | —=Ls | —Lo | —L1 | +1
—L, —Ls | —Ls | —Lo | =La | =11 | =11 | +1n
0 “Ls | =Ly | —Ls | =Li| 0 | 0 | +L
¥Li | —Ls | Lo | =L, | 0 | 0 | +L, | +L
+Lo —Ls | —L1 | Ly 0 | +Ly | +L1 | +L3
+Ls —Ly | +L1 | L1 | +Ly | +Lo | +L3 | +L3

. MemorySummilggggmple of a 2D LUT defining ®,(+C,m;, m,) ford,= 3
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The set Y Is now Y={-C,,-C,, C; C,}.
« Size of alphabet is still 7 levels (3-bit precision).

* Ford,= 4, we now need to design two 3D LUTSs, one
for £C; and for £C,

* They are chosen to optimize for both waterfall and
error floor performance.

« We also need to quantize the channel output
appropriately.
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Assuming BPSK + AWGN, the threshold T, is chosen
for a given SNR so that it maximizes the mutual
iInformation of binary-input 4-output channel.
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« Low-precision FAIDs lead to significant savings in
area and power especially at very high-rates.

* For ad,=3, R=0.92 code, it was shown in [TCAS'14]
that 3-bit FAID could provide more than 50% savings
In area. Similar gains or more are expected for d,=4.

* For 2-bit precision soft-channel, the common entries
In the two LUTs of FAID can be exploited for efficient
implementations [TCAS’'14].

[TCAS’14] F. Cai, X. Zhang, D. Declercq, S. K. Planjery, and B. Vasic, Finite
alphabet iterative decoders for LDPC codes, optimization, architecture, and
analysis,” Trans. Circuits and Systems, vol. 61, no.5, March 2014.
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FlashMemory Conclusions &

Key Benefits Lodelucida
 Ability to perform at very low-precision leading to
significant savings in power and area.

 Ability to provide superior error floor performance with
minimal loss in waterfall compared to BP and without
compromise in decoding latency.

 Ability to perform with low-precision soft-information.

Ongoing Work:
« Extending proof-of-concept of FAIDs to MLC and TLC

 FPGA implementations for further verification.
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THANK YOU!
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