

RRAM in IoT

Cliff Zitlaw Product Architect Crossbar Inc.

Flash Memory Summit 2014 Santa Clara, CA Session 304-C Flash and the Internet of Things

IoT In the Next Few Years

Internet Connection Demands Increasing

IoT nodes increasing from:

Computation Increasingly Moving to Nodes

Technology Drivers Supporting Node Deployment

Sensors becoming increasingly affordable

Smartphones as a gateway for IoT nodes to the internet

Bandwidth cost dropped by 40x in the last 10 years

Processing costs dropped 60x in the last 10 years

RRAM as NVM Alternative in IoT

Data Center – Block Oriented Data Storage

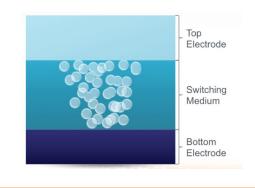
- Low latency(10⁻⁵ s), high bandwidth, low power
- Native 3D compatible array architecture
- Alternatives: SSD, DRAM (disk cache), hard disk

Nodes – XiP Code and Random Access Data

- Low latency (10⁻⁸ s), high bandwidth, low power
- CMOS BEOL compatible
- Alternatives: embedded NOR, discrete NOR

Existing NV Memory Technology Comparison

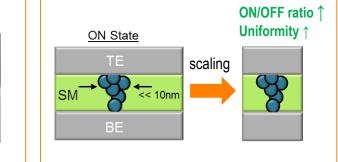
			RRAM	
Feature	Embedded NOR	NAND	Embedded 1T1R	1TnR
Non-Volatility	Yes	Yes	Yes	
Random Read	40ns	50us	20ns	1us
Program Time	268us/128B	>1000us /8KB (MLC)	12us/4B	64us/8KB
Erase Time/Size	168ms/16KB	>2ms(Block)	Erase Not Required EEPROM Emulation!	
Endurance	10 ⁵	MLC 10 ³	10 ⁸ - 10 ¹²	
Cell Size	0.1um ² @40nm	SLC 5F ² MLC	0.1um ² @40nm	SLC 4F ² , Stacking, MLC
Cost	Med	Low	Low	Very Low



Crossbar's RRAM-based Technology

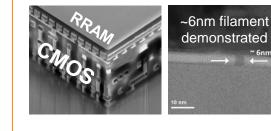
Simple, 3 layer Approach

- Metallic top electrode
- Resistive switching
 medium
- Non-metallic bottom electrode
- Electric field based filamentary switching



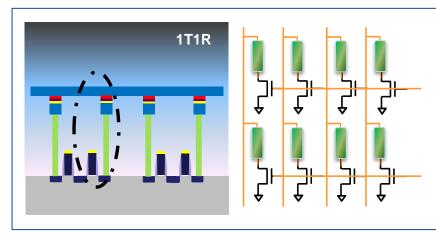
CMOS Back-End-Of-Line Compatible

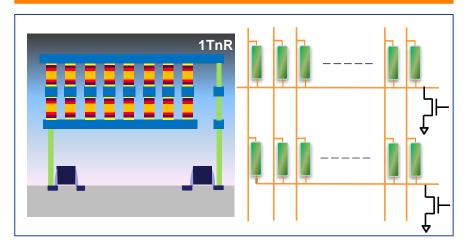
- RRAM layer(s) on top of CMOS logic
- Filament sizes less than 10nm demonstrated
- On/Off ratio improves with smaller geometries


Array Architectures

- Data storage
 - Approaching 4F² memory cell for data storage
 - Natively 3D stackable
- Code storage
 - Low latency

5


Flash Memory Summit 2014 Santa Clara, CA


RRAM Array Architectures

1T1R with Linear RRAMs

- Cell size dominated by the select transistor
- Suited for high speed embedded memory operation or high performance discrete NOR products

1TnR with Non-Linear RRAMs

- Effective cell size 4F²/ (number of RRAM layers)
- Under array is utilized for peripheral circuits – provides high array efficiency
- Suited for high density high performance memory (NAND/SCM memory)

Crossbar Development Schedule

1TnR Discrete

Device

1T1R Embedded NOR Macro

 2Mb to 64Mb densities

 Hard macro using 40um logic

Flash Memory Summit 2014 Santa Clara, CA

Thank You

Flash Memory Summit 2014 Santa Clara, CA

