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¢ LDPC codes outperform commonly used BCH codes in Flash

¢* The constructions thus far have primarily focused on binary LDPC
codes

¢ Non-binary LDPC codes offer substantial performance
improvement over binary LDPC codes

¢ A representative example:
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¢ Code parameters:
— Code length = 1000 bits,
— Code rate = 0.9,

— Column weight =4
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¢ LDPC codes outperform commonly used BCH codes in Flash
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For multilevel flash, well-designed non-binary LDPC codes show a lot of promise
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¢ Low-density parity-check (LDPC) codes are a class of channel
codes described by sparse parity check matrices, or equivalently
by sparse bipartite graphs

¢ Well known capacity achieving performance

¢ Graph representation allows for design of practical iterative
algorithms
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FIa#hMe@ory Binary LDPC Codes
[ SuUMMIT
¢ An example:

Variable
Binary code
v, v, Vv, v, v Vo,
1 11 0 1 00]¢
H=[1 1 0 1 0 1 0]02
1 01 1 0 01le

¢ Parity check c, tells us that v, +v,+v;+v. = 0 mod 2.
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FlashMemory Symbol-Based Representation
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¢ Instead of representing values in bits, represent values in
symbols

¢ Each symbol represents a prescribed number of bits

¢ Symbols take values in a Galois Field of size q (GF(q)), where g is
a power of 2.

¢ Example: GF(4)={0,1,2,3}

+ 01 2 3 x 0 1 2 3
0o 0 1 2 3 o 0 0 0 0
1 1 0 3 2 1 0 2 3
2 |2 |3 |0 |1 2 |0 |2 |3 |1
3003 2 0 3 0 3 2
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¢ Variable nodes take values in GF(q), and edges of the bipartite
graph and weighted by non-zero elements of GF(q)

¢ An example:

Non-binary code over GF(4)

V.oV, Vv, v, v, vV,
2 1 1 0 3 0 0]¢
H=(1 2 0 1 0 1 0]g,
1 0 3 1 0 0 2l¢
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¢ Variable nodes take values in GF(q), and edges of the bipartite
graph and weighted by non-zero elements of GF(q)

¢ An example:

Variable
Non-binary code over GF(4) nodes
v, Vv, V, V, V, V,V,
2 11 0 3 0 0]c
H=(1 2 0 1 0 1 0fc,
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¢ Variable nodes take values in GF(q), and edges of the bipartite
graph and weighted by non-zero elements of GF(q)

¢ An example:

Variable

Non-binary code over GF(4) nodes
Vl V2 I/3 ’/4 VS
2 1 1 0 3
H=|1 2 0 1 0
1 0 3 1 0
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FlashMemory Non-binary LDPC Codes
S UMM
¢ Variable nodes take values in GF(q), and edges of the bipartite

graph and weighted by non-zero elements of GF(q)
¢ An example:

Variable

Non-binary code over GF(4) nodes
Vl V2 I/3 ’/4 VS
2 1 1 0 3
H=|1 2 0 1 0
1 0 3 1 0

¢ Parity check c, tells us that 2v, +v,+v;+3v. = 0 in GF(4).
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FIaShMemory Error Floor

 SuUMMIT

¢ Error floor: a change in the slope of FER vs. SNR curve in high SNR
region.

¢ In flash applications, the elimination of the error floor is critical
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¢ Error floor: a change in the slope of FER vs. SNR curve in high SNR
region.

¢ In flash applications, the elimination of the error floor is critical

¢ In the error floor regime, certain codewords called absorbing sets
dominate the performance
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Binary Absorbing Sets (for Binary LDPC

FlashMemory  codes)

¢ Example: (4,4) absorbing set

O Variable node
(] n B Satisfied check node
B Unsatisfied check node

¢ Topological Condition: Each variable node is connected to strictly
more satisfied than unsatisfied checks

¢ (a,b) absorbing set has a variable nodes and b unsatisfied checks
Lara Dolecek UCLA 16
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FIaShMeﬁow Non-Binary Absorbing Sets
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¢ Certain subgraphs of the Tanner graph called non-binary absorbing sets
cause the error floor.

Lara Dolecek UCLA

21



FlaéhMefnory Non-Binary Absorbing Sets
 SuUMMIT |

& Certain subgraphs of the Tanner graph called non-binary absorbing sets
cause the error floor.

Example: (4,4) NB absorbing set over GF(4)
1 N — 3 1%1|:|

—_
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& Certain subgraphs of the Tanner graph called non-binary absorbing sets
cause the error floor.
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FlashMemory Non-Binary Absorbing Sets

& Certain subgraphs of the Tanner graph called non-binary absorbing sets
cause the error floor.
Example: (4,4) NB absorbing set over GF(4)

! v,

1 U2 : Al Consider:(v,v,,v,,v,)=(1,3.1,3)

1 O Variable node
’ + M Satisfied check node
’ B Unsatisfied check node
. 1 O 3 . 2 \E 1 .

V.
3

¢ Subgraphs corresponding to NB absorbing sets satisfy two conditions:

— Topological condition: Each variable node is connected to more satisfied
check nodes than unsatisfied check nodes.
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& Certain subgraphs of the Tanner graph called non-binary absorbing sets
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HashMemory Non-Binary Absorbing Sets
& Certain subgraphs of the Tanner graph called non-binary absorbing sets
cause the error floor.
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! v,

o 1 A2 - 3 ) 0 Consider:(\’1,\’3,\’3,\’4):(1 ,3.1.,3)

1 O Variable node
) + M Satisfied check node
f B Unsatisfied check node
O—l

¢ Subgraphs corresponding to NB absorbing sets satisfy two conditions:

— Topological condition: Each variable node is connected to more satisfied
check nodes than unsatisfied check nodes.
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HashMemory Non-Binary Absorbing Sets
& Certain subgraphs of the Tanner graph called non-binary absorbing sets
cause the error floor.

Example: (4,4) NB absorbing set over GF(4)

! Y,

F—O0—w—0O-m Consider:(v,v,,v,,v,)=(1,3.1.,3)

O Variable node
B Satisfied check node
B Unsatisfied check node

v V,

¢ Subgraphs corresponding to NB absorbing sets satisfy two conditions:
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HashMemory Non-Binary Absorbing Sets
& Certain subgraphs of the Tanner graph called non-binary absorbing sets
cause the error floor.

Example: (4,4) NB absorbing set over GF(4)

! v,

O w5 m Consider:(v,v,,v,,v,)=(1,3.1.,3)

O Variable node
B Satisfied check node
B Unsatisfied check node

¢ Subgraphs corresponding to NB absorbing sets satisfy two conditions:

— Topological condition: Each variable node is connected to more satisfied
check nodes than unsatisfied check nodes.

— Weight condition: The edges in the fundamental cycles satisfy weight
conditions. 1xX2x1=1x3x3 overGF(4)

3X3x3=2x3x1 overGF(4)
3X3x1=2x1x1 overGF(4)
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FlashMemory Elementary Absorbing Sets
"SUmmT
¢ Definition:
— A subset of the node set is an elementary absorbing set if all
neighboring satisfied checks have degree 2 and all neighboring
unsatisfied checks have degree 1.

¢ Lemma:

— An elementary non-binary absorbing set satisfies the following
conditions.

e (Topological condition) Unlabeled subgraph is an elementary binary
absorbing set.

e (Weight conditions) All of its cycles satisfy

p p
szl. = me over GF(q)
=1 =1

where w/'s, 1 << 2p, are edge weights and 2p is the length of the cycle.
Adjacent edges are labeled one after another in a clockwise fashion.
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MWy Algorithm to Eliminate Detrimental
FlﬂShMemOFY Absorbing Sets
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1. Identify a list (W) of problematic absorbing sets.

2. Find all (a, b) binary elementary absorbing sets in the unlabeled
bipartite graph as the candidates for (a, b) non-binary absorbing
sets.

3. For each candidate, check if the weight conditions are satisfied.

4. If yes, we change the weight of an edge to another non-zero
element of GF(q).

5. This process continues until all (a, b) non-binary absorbing sets in
W are eliminated or no more absorbing sets can be eliminated.
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~ Performance Improvement Using the
FlasllMemory Proposed Algorithm — Regular Codes
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¢ Code length ~ 2800 bits, rate ~ 0.87, column-weight 4 and
performing the QSPA FFT decoder
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[R1] C. Poulliat et al. “Design of regular (2, dc )-LDPC codes over GF(q) using their
binary images,” IEEE Trans. on Commun., vol. 56, no. 10, pp. 1626-1635, Oct. 2008.
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: Performance Improvement Using the
F'“MOYY Proposed Algorithm — Regular Codes

¢ Code length ~ 2800 bits, rate ~ 0.87, column-weight 4 and
performing the QSPA FFT decoder

107
107}
107
o
©
T, -6
5 10
o
o 107 | 1
£
S
w10 . .
i 10x improvement
-9
10~ || —e— Uninformed 1
—&— Cycle cancellation
107101 —* Absorbing set cancellation| 2
4.2 4.4 4.6 4.8 5 5.2
SNR(dB)
For GF(4) at 5.2 dB
Error Type | (4,4) | (5,0) | (5,2) | (6,2) | (6,6) | (7,4) | (8,2) | other
Uninformed 32 9 14 7 18 9 9 15
Cycle cancel. 0 0 0 0 12 5 5 12
AS cancel. 0 0 0 0 0 0 0 13

[R1] C. Poulliat et al. “
binary images,”
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Design of regular (2, dc )-LDPC codes over GF(q) using their
IEEE Trans. on Commun., vol. 56, no. 10, pp. 1626-1635, Oct. 2008.
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: Performance Improvement Using the
F'“MOW Proposed Algorithm — Regular Codes

¢ Code length ~ 2800 bits, rate ~ 0.87, column-weight 4 and
performing the min-sum decoder.

10x improvement

) J —6—Uninformed

—=—Cycle cancelation
07 —+— Absorbing set cancellation F(1e
44 4.6 48 5 52
For GF(4) at 5.2 dB SNR(dB)
Error Type (4,4) | (5,0) | (5,2) | (6,2) | (6,4) | (6,6) | (7,4) | (8,2)| other
Uninformed 43 9 14 8 8 12 7 6 23
Cycle cancel. 0 0 0 0 0 9 5 4 14
AS cancel. 0 0 0 0 0 0 0 0 15

[R1] C. Poulliat et al. “Design of regular (2, dc )-LDPC codes over GF(q) using their
binary images,” IEEE Trans. on Commun., vol. 56, no. 10, pp. 1626-1635, Oct. 2008.
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Irregular Codes

¢ Code length ~ 2000 bits, rate ~ 0.85, column-weights 4 and 5, and

performing the QSPA-FFT decoder.
107 — w x

—6—Uninformed

107 —s—Cycle cancelation

For GF(4) at 5.0 dB

10x improvement

107"l Absorbing set cancellation 9 |
I I I | | |
4 4.2 44 4.6 4.8 5
SNR(dB)
Error Type size 4 | size5 | size 6 | size 7 | size 8 | other
AS AS AS AS AS
Uninformed 42 31 16 18 8 31
Cycle cancel. 0 0 0 12 5 24
AS cancel. 0 0 0 0 25
C codes over GF(q

‘Design of regular (2, dc)- LDP

using their

[R1] C. Poulliat et al.
IEEE Trans. on Commun., vol. 56, no. 10, pp. 1626-1635, Oct. 2008.

binary images,”
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FlashMemory

Non-binary quasi-cyclic codes without

oLy small absorbing sets
¢ Quasi-cyclic codes with code length ~1200 bits, rate ~0.8, column
weight 5.
10° 5
10‘1
107t :
10°F ~
0™ e 4
C e o seecten| o) «— l 10x improvement
10 2 2i5 é Sl\?li:?(dB) 21 415 é
For GF(16) at 5.0 dB

Error Type | (4,8) | (5.9) | (6,8) | (6,10) (7,9) | (7,11)| (8,6) | other

Random 29 0 37 0 22 0 9 0

Informed 0 0 2 5 4 4 3 0

[R2] B. Zhou et al. “High-performance non-binary LDPC codes on Euclidean

geometries,” IEEE Trans. on Commun., vol. 57, no. 5, pp. 1298-1311, May 2009.
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FlashMemory In summary
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¢ Non-binary LDPC codes offer significant performance

improvement over both binary LDPC codes and over BCH codes

For multilevel flash, well-designed non-binary LDPC codes show a lot of promise

Lara Dolecek UCLA

43



FlashMemory In summary
 SuUMMIT

¢ Non-binary LDPC codes offer significant performance
improvement over both binary LDPC codes and over BCH codes

¢ Elimination of error floor is critical for high-reliability applications

¢ Non-binary absorbing sets capture decoding errors
— We have developed algorithmic and combinatorial techniques
for elimination of non-binary absorbing sets
— Techniques are applicable for a broad range of codes and
decoders and offer > 10x improvement over best NB LDPC
codes

| For multilevel flash, well-designed non-binary LDPC codes show a lot of promise |

Lara Dolecek UCLA 44



FlashMemory References

 SUMMIT |
[1] B. Amiri, J. Kliewer, and L. Dolecek, “Analysis and Enumeration
of Absorbing Sets for Non-Binary Graph-Based Codes,” IEEE
Transactions on Communications, 2013.
[2] L. Dolecek, D. Divsalar, Y. Sun and B. Amiri, “Non-Binary
Protograph-Based LDPC Codes: Enumerators, Analysis, and
Designs,” IEEE Transactions on Information Theory, 2014.
[3] B. Amiri, A. Flores, and L. Dolecek, “Design of Non-Binary Quasi-
Cyclic LDPC Codes by Absorbing Set Removal,” IEEE Information
Theory Workshop, 2014.

Lara Dolecek UCLA 45



— UCLA Center on Development of Emerging
FIasIlMemory Data Storage Systems (CoDESS)

"SuMmMIT
¢ CoDESS is founded in 2013.

+ Webpage: http://www.uclacodess.org/

¢ Mission:
—Push the frontiers in emerging data storage systems through
integrated research program.

—Create highly--trained workforce of graduate students and post-
doctoral researchers.

¢ For more information, please email to

—Prof. Lara Dolecek (dolecek@ee.ucla.edu)
—Prof. Richard Wesel (wesel@ee.ucla.edu)
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