Designing SSDs for large scale cloud workloads

Kushagra Vaid GM, Server Engineering, Microsoft

FLASH MEMORY SUMMIT, AUG 2014

5.8+ billion worldwide queries each month. bing			250+ million active users.	400+ million active accounts. Outlook.com	
2.4+ million emails per day. Microsoft* Exchange Hosted Services		8.6+ trillion objects in Windows Azure storage.	re		
48+ million users in 41 markets.	50+ million active users.	1 in 4 Enterprise customers.	50+ billion minutes of conne handled each day	ections /.	

200+ Cloud Services @ Microsoft

1+ billion customers. 20+ million businesses. 90+ markets worldwide.

Cloud workloads are different!

Examples:

- ► Read-mostly, write-once per day
- Sequential write streams for object stores
- Synchronous replication for data durability ; No RAID
- Flash used as intermediate buffer pool between DRAM/HDD

SSD scale implications: Design

	Client	Enterprise	Cloud
Performance IOPS	Medium	High	Medium
Duty cycle	<100%	100%	100%
NAND endurance	0.5-3K P/E	30-40K	15-20K
Data retention	12 months	3	<= 1
Power loss protection	No	Yes	App-specific

SSD scale implications: Operations

	Client	Enterprise	Cloud
Data logging	Minimal	Differs across vendors	Rich and Consistent
Error handling	None	"Brick" or sometimes resume	Always Resume
Failure Recovery	None	Skilled technician	Automated, remote recovery
Security	None	Secure erase	Secure erase

Microsoft SSD reference design

- Built on proven commercial ASIC
- SATA interface
- eMLC NAND
- PFAIL functionality implemented
- Rich set of instrumentation/counters

FLASH MEMORY SUMMIT 2014

Exploring NAND tradeoffs for Cloud

Abbr.	Parameter	Changes	Endurance	Performance	Power
C _R	Code Rate	Fixed \rightarrow Variable	\uparrow	Targeted Overheads	\leftrightarrow
t _{ret.}	Data Retention	Decrease	\uparrow	\leftrightarrow	\leftrightarrow
ECC _{Type}	Code Style	Hard \rightarrow Hard + Soft	\uparrow	\leftrightarrow	\leftrightarrow
V _{TH}	Read Thresholds	Dynamic, Targeted Read Parameters	\uparrow	\leftrightarrow	\leftrightarrow
t _{dwell}	Dwell Time	Increase	\uparrow	\checkmark	\leftrightarrow
V _{prog.}	Write Voltages	Decrease	\uparrow	\checkmark	\checkmark

Microsoft

FLASH MEMORY SUMMIT 2014

NAND tuning on Microsoft SSD

Abbr.	Parameter	Changes	
C _R	Code Rate	24b → 29b	
t _{ret.}	Data Retention	Decrease (3 → 1 mo)	
ECC _{Type}	Code Style	Hard → Hard + Soft	
V _{TH}	Read Thresholds	Dynamic, Targeted Read Parameters	
t _{dwell}	Dwell Time	Increase	
V _{prog.}	Write Voltages	Decrease	

Characterize NAND for 1 month retention

Change firmware for increased ECC coverage (24b \rightarrow 29b)

What is the corresponding endurance improvement?

NAND parameter tuning results

50% endurance improvement with no change in product cost, performance or power

Exploring NAND parameter tradeoffs

FLASH MEMORY SUMMIT 2014

Microsoft

Goals for benchmarking SSDs at-scale

Scalable: #SSDs x #Workloads x #Metrics

Scriptable and Automated: Quickly construct and execute tests

Simplified results data analysis and customized scoring

Consistency in quantifying workload-specific endurance

Microsoft's SSD analysis tool - StorScore

Automated = = Minimal Engineering Time

Scripted == Quick & Easy to Modify

Extensively used at Microsoft to drive SSD selection for Cloud workloads

StorScore benefits

Automatic pre-conditioning and push-button ease allow large scale parallel testing cutting down evaluation times

	BEFORE	AFTER
Test development effort	Tedious & Manual	Automated & Productive
Endurance qualification (1 TB example)	1 workload per SSD in 5 months	1 workload per SSD in 2 hours
Data analysis for scale tests	Unmanageable	Structured data with consumable reports

Contributing StorStore to the community

Available now for *free download*

http://aka.ms/storscore

For additional technical information, attend afternoon session Presenters: Laura Caulfield and Mark Santaniello, Microsoft Title: StorScore – Microsoft's System for SSD Qualification Time: 2:40-3:55pm

Location: Ballroom G, Session 303-F (Testing Challenges)

Solution-level thinking - deeper understanding of cloud workloads requirements and datacenter environments

Collaboration between End-user, Flash controller and NAND manufacturer

Workload-driven optimizations for APIs, FTL and NAND

NVMe offers ideal canvas for driving next generation of innovations Non-linear improvements in endurance and device life

Microsoft's scalable test framework now available openly for standardized performance/endurance evaluation

THANK YOU

