
Programming for Non-Volatile Memory

Doug Voigt,

Hewlett Packard (Enterprise)

Flash Memory Summit 2015

Santa Clara, CA 1

Contents

Flash Memory Summit 2015

Santa Clara, CA 2

 Implications of the NVM Programming Model
Map and Sync, Opt flush and verify, Pointers, Atomicity,
Exception Handling

 Persistent Memory Data Structures
Atomic updates, PM Allocation, Data structure library, transactions

 High Availability
Remote Opt Flush, Recovery scenarios, Application level backtracking

Latency thresholds cause disruption

Flash Memory Summit 2015

Santa Clara, CA 3

L
a

te
n
c
y
 (

L
o

g
)

200 nS

2 uS

HDD
SATA

SSD

NVMe

Flash

Persistent

Memory

Context

Switch

NUMA

Min, Max Latencies For

Example Technologies

Persistent Memory (PM) is a type of

Non-Volatile Memory (NVM)

Flash Memory Summit 2015

Santa Clara, CA 4

• Disk-like non-volatile memory
• Appears as disk drives to applications

• Accessed as traditional array of blocks

• Memory-like non-volatile memory
• Appears as memory to applications

• Applications store data directly in byte-addressable memory

• No IO or even DMA is required
“Persistent memory”

refers to memory-like

non-volatile memory

SNIA NVM Programming Model

Flash Memory Summit 2015

Santa Clara, CA5

• Version 1.1 approved by SNIA in March 2015
• http://www.snia.org/tech_activities/standards/curr_standards/npm

• Expose new block and file features to applications
• Atomicity capability and granularity

• Thin provisioning management

• Use of memory mapped files for persistent memory
• Existing abstraction that can act as a bridge

• Limits the scope of application re-invention

• Open source implementations available

• Programming Model, not API
• Described in terms of attributes, actions and use cases

• Implementations map actions and attributes to API’s

http://www.snia.org/tech_activities/standards/curr_standards/npm

Block Access NVM

No Application Functionality Change

Flash Memory Summit 2015

Santa Clara, CA 6

Implications of the NVM Programming Model

for Persistent Memory Applications

Flash Memory Summit 2015

Santa Clara, CA 7

Persistent memory modes

Flash Memory Summit 2015

Santa Clara, CA 8

Application

PM device PM device. . .

User space

Kernel space

MMU
Mappings

PM-aware
file system

NVM PM capable driver

Load/
store

Native file
API

PM-aware
kernel module

PM device

NVM.PM.VOLUME
mode

NVM.PM.FILE mode

Use with memory-like NVM

NVM.PM.VOLUME Mode
• Software abstraction to OS components for

Persistent Memory (PM) hardware

• List of physical address ranges for each PM

volume

• Thin provisioning management

NVM.PM.FILE Mode
• Describes the behavior for applications

accessing persistent memory Discovery and

use of atomic write features

• Mapping PM files (or subsets of files) to virtual

memory addresses

• Syncing portions of PM files to the persistence

domain

Map and Sync

Flash Memory Summit 2015

Santa Clara, CA 9

• Map
• Associates memory addresses with open file
• Caller may request specific address

• Sync
• Flush CPU cache for indicated range
• Additional Sync types
• Optimized Flush – multiple ranges from user space
• Optimized Flush and Verify – Optimized flush with read back from media

• Warning! Sync does not guarantee order
• Parts of CPU cache may be flushed out of order
• This may occur before the sync action is taken by the application
• Sync only guarantees that all data in the indicated range has been flushed

some time before the sync completes

Pointers

How can one persistent memory mapped data

structure refer to another?

• Use its virtual address as a pointer
• Assumes it will get the same address every time it is memory mapped
• Requires special virtual address space management

• Use an offset from a relocatable base
• Base could be the start of the memory mapped file
• Pointer includes namespace reference

Flash Memory Summit 2015

Santa Clara, CA 10

Failure atomicity

• Current processor + memory systems
• Guarantee inter-process consistency (SMP)

• But only provide limited atomicity with respect to failure

• System reset/restart/crash

• Power Failure

• Memory Failure

• Failure atomicity is processor architecture specific
• Processors provide failure atomicity of aligned fundamental data types

• Fundamental data types include pointers and integers

• PM programs use these to create larger atomic updates or transactions

• Fallback is an additional checksum or CRC

Flash Memory Summit 2015

Santa Clara, CA 11

Figure 1 Linux Machine Check error flow with proposed new interface

Application

NVM Device NVM Device NVM Device. . .

User space

Kernel space

MMU
MappingsPM-Aware File System

Load/StoreNative File API

mcheck
①

②

③

Legend for labeled lines:
① (proposed) NVM.PM.FILE implementation
registers with mcheck module
② MCA reports error to mcheck module
③ (proposed) mcheck reports error to
NVM.PM.FILE implementation

 1

New machine check flow

to integrate file and PM

level recovery

Thread restart required unless

memory hardware error detection

is both precise and contained

Precise: exact memory location(s) are identified

Contained: instruction execution can be resumed (RTI)

Error handling –

exceptions instead of status

Application gets exception if file level recovery fails

or backtracking is needed

Persistent Memory Data Structures

Flash Memory Summit 2015

Santa Clara, CA 13

Application horizons

Compiler

Until

Recently
Horizon 3:

Languages

Application

File System File System

File System

PM

Application Application

Application

PM Library

File System

PM PM

Disk Driver

Horizon 1:

PM Middleware

Horizon 2:

PM Libraries

SSD

PM data structure libraries

Flash Memory Summit 2015

Santa Clara, CA 15

User

Space

Kernel

Space

PM Aware

Application

PM-Aware

File System

MMU

Mapp

ings

Persistent Memory

PM data structure

libraries

File APIs Mem ops

Flash Memory Summit 2015

Santa Clara, CA

Trivial example: append only log

Append pseudocode:
<Create new log entry in free space>

Sync(new entry);

filled = filled + size(new entry); # Atomic update to fundamental data type

Sync(filled);

Flash Memory Summit 2015

Santa Clara, CA 16

Pre-allocated PM pool

Int filled;
Next entry WIP

Filled part of log Free part of log

Transactional allocation

• Pmalloc – Allocate space for persistent data structures
• Allocates ranges of memory mapped PM from a pool or file

• PM memory allocation survives power loss

• PM space management information (free list) must be persistent

• PM allocation must be atomic
• Failure before completion of data structure creation must roll back allocation

• Requires a common anchor object for transactions and space management

Flash Memory Summit 2015

Santa Clara, CA 17

Linked list example

Flash Memory Summit 2015

Santa Clara, CA 18

free range

PM Pool

Range in use Link Pointer

free list

Link pseudocode:
<Temporarily allocate free range for new item>

<Create new item in temporarily allocated space>

<Transactionally update link pointer and free list>

Free list and link pointers

must be updated atomically

Larger transactions

Flash Memory Summit 2015

Santa Clara, CA 19

• Atomic updates to arbitrary data structures
• Transactions delimited by Begin, End indicators

• Ranges to be atomically updated are registered using add_range

• Transaction object tracks and manages ranges

• Capture pre-image and roll back on abort

• Sync/Flush data to persistence domain on commit

• Groups of data structures can participate
• Within the same PM pool

• Cataloged under a common root

Pmem.io Library

Flash Memory Summit 2015

Santa Clara, CA 20

• http://pmem.io/nvml

• PM assist functions

Map, Sync, Allocation

• PM Data Structures

Log, Block

• PM Object

Root, Transactions, Type Safety and more

http://pmem.io/nvml

Language vs. Library

• Features similar to pmem can be integrated into standard

programming languages
• More convenient

• More sophisticated

• Safer

http://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf
Failure atomic code sections based on existing critical sections

http://www.snia.org/sites/default/files/BillBridgeNVMSummit20

15Slides.pdf
NVM region file management, transactions with locks, heap management

Flash Memory Summit 2015

Santa Clara, CA 21

http://www.hpl.hp.com/techreports/2013/HPL-2013-78.pdf
http://www.snia.org/sites/default/files/BillBridgeNVMSummit2015Slides.pdf

Failure Recovery

Flash Memory Summit 2015

Santa Clara, CA 22

PM fault tolerance

Flash Memory Summit 2015

Santa Clara, CA 23

User

Space

Kernel

Space

PM Aware

Application

PM-Aware

File System

MMU

Mapp

ings

Persistent Memory

PM RAID or

Erasure Coding

File APIs Mem ops

Flash Memory Summit 2015

Santa Clara, CA

Durability and Availability

Flash Memory Summit 2015

Santa Clara, CA 24

CPU
NVDIMMS

IO

CPU
IO

Network

Adapter

Network

Adapter

Network

Switch(s)

Server

Server

2

1St

St

NVDIMMS

Durability
• Ability to (eventually) recover

data after failure

• e.g. Local mirroring (1)

• Does not guarantee

continuous access

Availability
• Ability to continuously access

data regardless of failure

• Requires cross-node

redundancy (2)

• Availability requires durability

Recovery AND Consistency

• Application level goal is recovery from failure
• Requires robust local and remote error handling

• High Availability (as opposed to High Durability) in
today’s systems requires application involvement.

• Consistency is an application specific constraint
• Uncertainty of data state after failure

• Crash consistency

• Higher order consistency points such as transactions

• Atomicity of Aligned Fundamental Data Types

25Flash Memory Summit 2015

Santa Clara, CA

Remote Access for High Availability

• SNIA NVMP TWG work in progress
• Use today’s RDMA to explore this use case

• Agnostic to specific implementation (IB, ROCE, iWARP)

• Optimal implementation may not always be RDMA

• Recommends Remote OptimizedFlush network service
• Goal is to minimize latency

• Requires at least 2 round trips with today’s implementations

• Main issue is assurance of durability at remote site.

• New RDMA completion type helps
• Proposed in Open Fabrics Alliance IO working group

• Delays RDMA completion until data is in the remote persistence domain

• Likely component of remote optimized flush implementation

Flash Memory Summit 2015

Santa Clara, CA 26

Figure 1 Linux Machine Check error flow with proposed new interface

Application

NVM Device NVM Device NVM Device. . .

User space

Kernel space

MMU
MappingsPM-Aware File System

Load/StoreNative File API

mcheck
①

②

③

Legend for labeled lines:
① (proposed) NVM.PM.FILE implementation
registers with mcheck module
② MCA reports error to mcheck module
③ (proposed) mcheck reports error to
NVM.PM.FILE implementation

 1

New machine check flow

to integrate file and PM

level recovery

Thread restart required unless

memory hardware error detection

is both precise and contained

Precise: exact memory location(s) are identified

Contained: instruction execution can be resumed (RTI)

Error handling –

Remember this?

Application gets exception if file level recovery fails

or backtracking is needed

Precise: exact memory location(s) are identified

Contained: instruction execution can be resumed (RTI)

Flash Memory Summit 2015

Santa Clara, CA

27

• Occurs when PM state is recovered to a recent
consistency point
• Created by remote optimized flush or transaction

• Requires work in progress to be reconciled by the application

• Detection
• During an exception

• During a system or application restart

• Application Response
• Transaction roll forward or roll back and retry

• Consistency checking and correction

Backtracking recovery

Flash Memory Summit 2015

Santa Clara, CA

28

Recovery scenarios with

precise and contained exceptions

• In line recovery

• When the primary copy of data is lost, the data is recovered during a

memory exception without any application disruption

• Requires stronger replication order than sync or optimized flush

• Backtracking recovery

• When the primary copy of data is lost, transaction(s) involving the

data must be adjusted by the application (roll forward or back)

• Best case recovery if the secondary copy is not guaranteed to be

sufficiently up to date to allow direct replacement

Flash Memory Summit 2015

Santa Clara, CA

29

• Local application restart
• When the primary copy of data is lost the application must

restart on the same server

• Data is recovered during the restart and must adhere to a
consistency mode from which the application is designed
to recover with an acceptable RPO.

• Application Failover
• A node running an application and/or data access is lost so

the application must fail over to another node.

• The data on the new node must adhere to a consistency
mode from which the application is designed to recover
with acceptable RPO

Recovery scenarios without

precise and contained exceptions

Flash Memory Summit 2015

Santa Clara, CA30

Application recovery scenarios

31

S
c

e
n

a
ri

o

R
e

d
u

n
d

a
n

c
y

fr
e

s
h

n
e

s
s

E
x

c
e

p
ti

o
n

A
p

p
li

c
a

ti
o

n

b
a

c
k

tr
a

c
k

 w
it

h
o

u
t

re
s

ta
rt

S
e

rv
e

r
R

e
s

ta
rt

S
e

rv
e

r
F

a
il

u
re

In Line Recovery Better than

sync

Precise and

contained

NA No No

Backtracking Recovery Consistency

point

Imprecise and

contained

Yes No No

Local application restart Consistency

point

Not contained No NA No

NA NA Yes No

Application Failover Consistency

point

NA NA NA Yes

Flash Memory Summit 2015

Santa Clara, CA

Review

Flash Memory Summit 2015

Santa Clara, CA 32

 Implications of the NVM Programming Model

 Persistent Memory Data Structures

 High Availability

Thank You

Flash Memory Summit 2015

Santa Clara, CA 33

