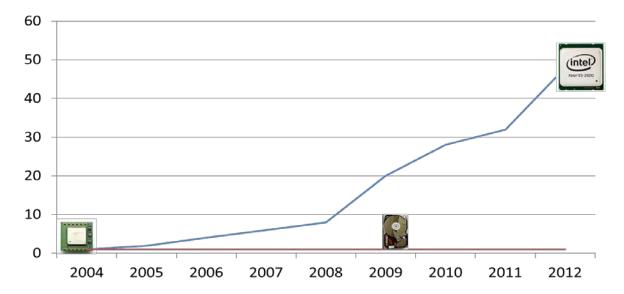


Deploying Flash in the Data Center

Or How this Flash

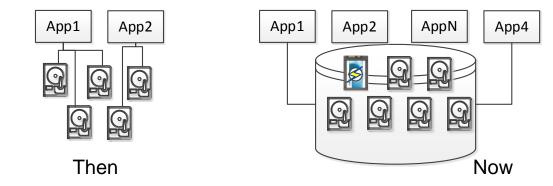

Makes Storage Like This Flash®

- The storage performance problem
- Flash to the rescue
 - A brief flash memory primer
 - Flash/SSD types and form factors
- The All Flash Arrays (AFA)
- Hybrid arrays
- Server side flash
- Converged architectures
- Choosing a solution

- Processor speed doubles every 2-3 years
- Disks have been stuck at 15K RPM since 2000

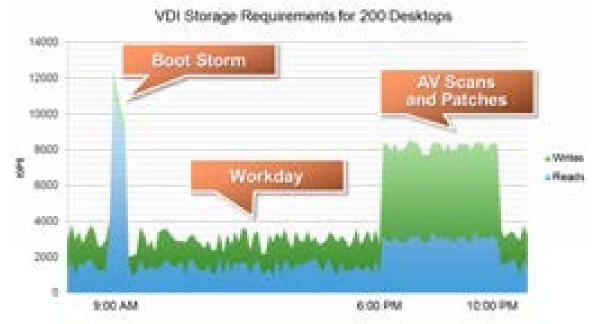
Memory "The I/O Blender" Strains Storage

- Virtualization throws I/O into a blender... all I/O is now random I/O!
- 10 VMs doing sequential I/O to the same datastore=random I/O
- Disk drives are good at sequential, less good at random



Flash Memory The Noisy Neighbor Moves In

Dedicated spindles are like solid walls


- Applications have limited effect on each other
 - Backups excepted Same data
- Shared datastores provide no protection
 - 1 application demanding 10,000 IOPS will slow the others.

VDI Presents Unique Workloads

- Highly variable but coincident (boot/login in AM)
- Steady state 50+% write
- 40+% of projects fail due to storage performance

Memory Data Access Performance

~1ns

~4ns

~100ns

- L1 processor cache
- L2 processor cache
- Main memory
- PCIe SSD read
- SAS/SATA SSD read 200,000ns)
- Disk read

Memtest86+ 5.01						
CLK: 2267	MHz	(X64 Mod	le) 👘			
L1 Cache:	32K	75560	MB∕s			
L2 Cache:	256K	29826	MB∕s			
L3 Cache:	8192K	22223	MB/s			
Memory :	48G	9252	MB/s			

16-60µs (16,000-60,00ns) 50-200µs (50,000-

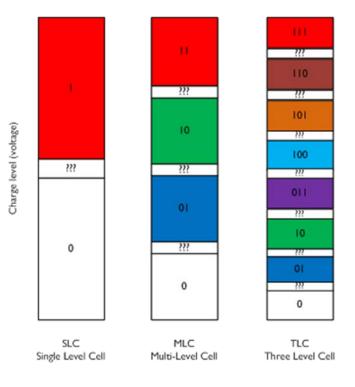
4-50ms (4-50,000,000ns)

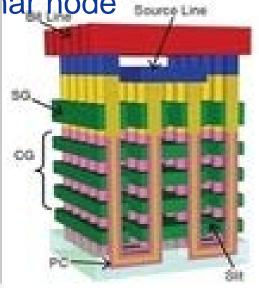
Moral of the story: keep IOPS away from the disk

Memory Traditional Performance Solutions

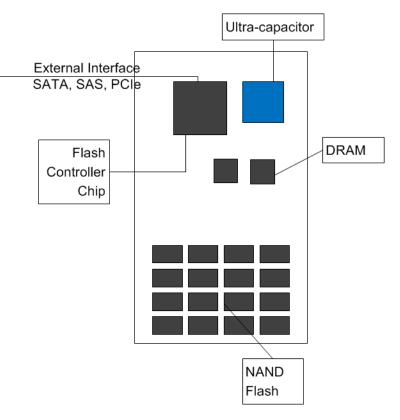
- Head per track disk drives, DRAM SSDs
 - Huge price premium limits use to the very few
- Wide Striping
 - A 15K RPM disk delivers 200 IOPS
 - For 10,000 IOPS spread load across 50 drives
 - Of course that's 15PB of capacity
 - Short stroking
 - Use just outside tracks to cut latency
- Wasting capacity wastes \$ and OpEx (power, maint)

Flash Memory What Is Flash Memory?


- Solid State, Non-volatile memory
 - Stored charge device
 - Not as fast as DRAM but retains
- Read/Write blocks but must erase 256KB-1MB pages
 - Erase takes 2ms or more
 - Erase wears out cells
- Writes always slower than reads


The Three, & 1/2, Types of Flash

- Single Level Cell (SLC) (1bit/cell)
 - Fastest
 - 50,000 program/erase cycle lifetime
- Multi Level Cell (MLC) (2 bits/cell)
 - Slower
 - 3,000 program/erase cycle lifetime
- eMLC or HET MLC (2 bits/cell)
 - Slightly slower writes
 - 12-20,000 cycles
- Triple Level Cell (TLC) (3 bits/cell)
 - 3D/LDPC boosts endurance to data center level

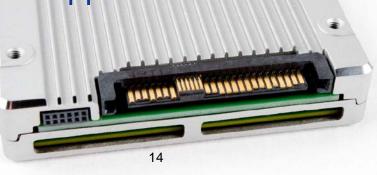

- Smaller cells are denser, cheaper, crappier
 - Today's 1x nm cells (15-19nm) last planar node
- 3D is the future
 - Samsung now shipping 3D
 - Others sampling
 - SanDisk/Toshba 256GB/chip
- Other technologies post 2020
 - PCM, Memristors, Spin Torque,

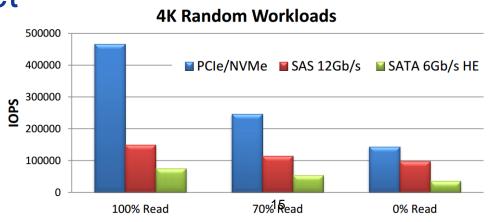
Anatomy of an SSD

- Flash Controller
 - Provides external interface
 - SAS, SATA, PCIe
 - Wear leveling
 - Error correction
 - Shifting to LDPC
- DRAM
 - Write buffer & Metadata
- Ultra or other capacitor
 - Power failure DRAM dump
 - Enterprise SSDs only

Flash/SSD Form Factors

- SATA 2.5"
 - The standard for laptops, good for servers
- SAS 2.5"
 - Dual ports for dual controller arrays
- PCIe
 - Lower latency, higher bandwidth
 - Blades require special form factors
 - M.2 for small form factors like notebooks
 - U.2 for 2.5" hot swap




Memory U.2/SFF-8639 PCIe for 2.5" SSDs

- Adds x4 PCIe 3.0 lanes to SAS/SATA connector
 - Dual ports to x2
- Appearing on new servers
 - Making PCIe/NVMe SSDs hot swappable
- Next step for storage arrays

- New logical interface for PCIe storage
 - Replaces ACHI
- More, deeper queues
- Simpler command set
- Lower latency
 - 300 vs 500+µs

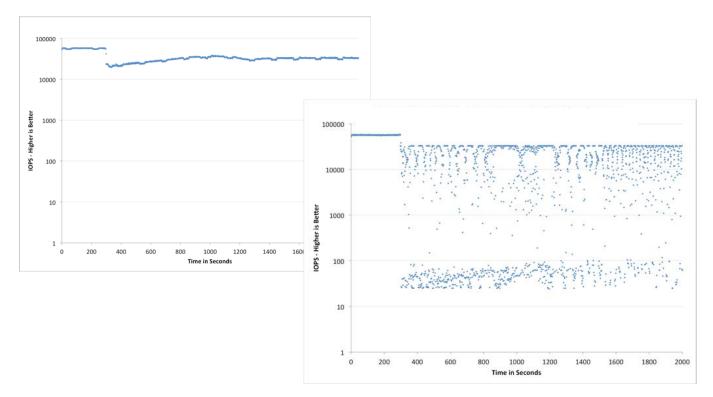
Memory SSDs use Flash but Flash≠SSD

- Fusion-IO cards
 - Atomic Writes
 - Send multiple writes (eg: parts of a database transaction)
 - Key-Value Store
 - FTL runs in host CPU

Diablo Puts Flash on the Memory Bus

- Memory Channel Flash (SanDisk UltraDIMM)
 - Block storage or direct memory
 - Write latency as low as 3µsec
 - Requires BIOS support
- Memory1
 - 400GB/DIMM
 - No BIOS/OS Support
 - Volatile

- Trust your OEM's qualification
 - They really do test
- Most applications won't need 100K IOPS
- Endurance ≠ reliability
 - SSDs more reliable than HDDs
 - 2 million hr MTBF
 - 10^17 BER vs 10^15 for near line HDD
 - Wear out is predictable
 - Consider treating SSDs as consumables
 - However don't use read optimized drive in write heavy environment



Flash Memory SanDisk's Enterprise SATA SSDs

Name	Sizes	IOPS r/w	Endurance	Application
Eco	240, 480, 960	80K/15K	1 DWPD, 3yr	Read intensive
Ascend	240, 480, 960	75K/14K	1 DWPD, 3yr	Read intensive
Ultra	200, 400, 800	75K/25K	3 DWPD, 5yr	General purpose
Extreme	100, 200, 400, 800	75K/25K	10 DWPD, 5yr	Write intensive

DWPD = Drive Writes Per Day

- There are 31 flavors of flash usage
- What's best for you depends on your:
 - Application mix
 - IOPS demand
 - Tolerance of variable performance
 - Pocketbook
 - Organizational politics

Memory Basic Deployment Models

- SSDs in server as disk
- All solid state array
- Hybrid arrays
 - Sub LUN tiering
 - Caching
- Storage Network Caching
- Server side caching
- Hyperconverged infrastructures

- Minimizes latency and maximizes bandwidth
 - No SAN latency/congestion
 - Dedicated controller
- But servers are unreliable
 - Data on server SSD is captiv_

- Web 2.0
- SQL Server Always On
- Software cross-server mirroring
 - But that adds latency to writes

All Flash Array Vendors Want You to Think of This

But Some Are This

ER ENERGY REL

51

Rackmount SSDs

- Our drag racers
 - They go fast but that's all they do
- The first generation of solid state
- Not arrays because:
 - Single Controller
 - Limited to no data services
 - Thankfully dying out

Flash Memory The Hot Rods

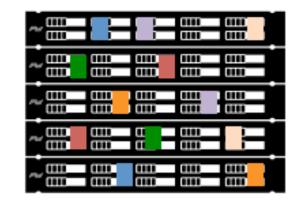
- Legacy architectures with SSD replacing HDD
 - NetApp EF550
 - EMC VNX-F

- Equallogic PS6110s
- Many 2nd and 3rd tier vendor's AFAs
- Limited performance
 - 50-300,000 IOPS
- Full set of data management features
- Wrong architecture/data layout for flash

- Minimum dual controllers w/failover
- Even better scale-out
- Higher performance (1 megalOP or better)
- Better scalability (100s of TB)
- Most have partial data management features
 - Snapshots, replication, thin provisioning, REST, Etc.
- May include data deduplication, compression
 - Lower cost w/minimal impact on performance

sh Memory Legacy Vendors All Flash Array


- 3Par and Compellent's data layout better for flash
 - Easier tiering, less write amplification
- Dell Compellent
 - Mixed flash
 - SLC write cache/buffer, MLC main storage
 - Traditional dual controller
- HP 3Par Storeserv 7450
 - 220TB (Raw)
 - 2-4 controllers


Flash Memory Pure Storage Flasharray//m

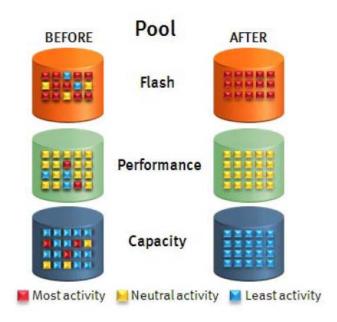
- Dual x86 Controllers in canisters 3u
- 300 KIOPS
- SAS shelves, U.2 ports in head
- PCIe NVRAM shared
- 2.75-35TB raw capacity
- Always on compress ar
- FC, iSCSI or FCoE

- Scale out architecture
 - 5 node starter 174TB (raw) 375K IOPS
 - Scale to 100 nodes
- Always on dedupe, compression
- Content addressed SSDs
- Leading storage QoS
- Moving from cloud providers to enterprise
- iSCSI, FC via bridge nodes

- Scale-out Fibre Channel
- X-Brick is 2 x86 servers w/SSDs
- Scales to 8 X-Bricks (but not online)
- Infiniband RDMA interconnect
- Shared memory requires UPS
- Full time dedupe, CAS
- 10-80TB raw

Memory Violin Adds Services

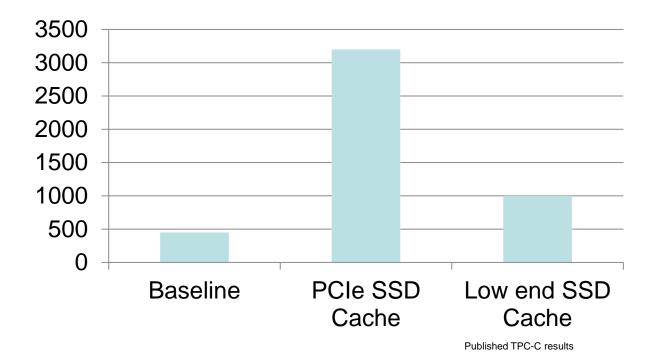
- Violin was market leader in hotrod era
- That's not enough
- Windows Flash Array WSS on 6000 array
- Concerto 7000 storage routers ala Whiptail
 - Snapshots, replication Etc. via Falconstor
 - Scale to 280TB
- Unique flash modules
 - PCIe switched
 - Better consistency

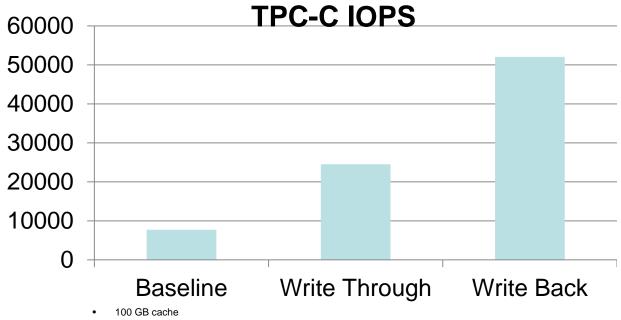


Hybrid Arrays

- Combine flash and spinning disk in one system
 - Usually 7200RPM
- Legacy designs with SSDs added
- Next-Gen Hybrids
 - Tegile Nimble
 - NexGen Tintri
- High performance
 - 20,000 IOPS or more from 3-4u
 - 10% flash usually provides 2-4x performance boost
- Typically include deduplication, compression, virtualization features

- Moves "hot" data from slow to fast storage
- Only 1 copy of data
- Must collect access frequency metadata
- Usually on legacy arrays
- Ask about granularity, frequency
 - Up to 1GB, once a day
- Can give unpredictable performance

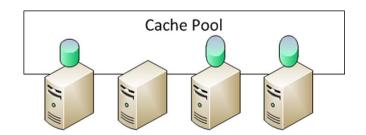

- Data copied to flash on read and/or write
- Real time
- Write around
 - Reads cached
- Write-through cache
 - All writes to disk and flash synchronously
 - Acknowledgment from disk
- Write back cache
 - Write to flash, spool to disk asynchronously

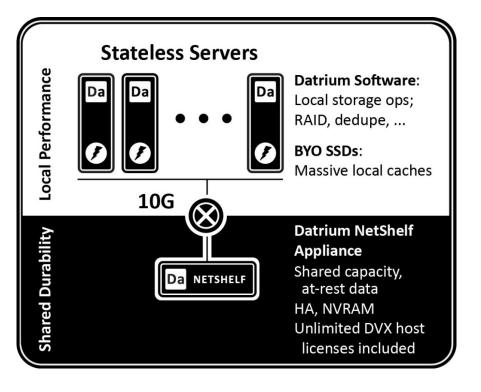

Memory Server Flash Caching Advantages

- Take advantage of lower latency
 - Especially w/PCIe flash card/SSD
- Data written to back end array
 - So not captive in failure scenario
- Works with any array
 - Or DAS for that matter
- Allows focused use of flash
 - Put your dollars just where needed
 - Match SSD performance to application
 - Politics: Server team not storage team solution

Dataset 330GB grows to 450GB over 3 hour test

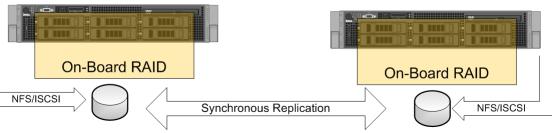
Flash Memory Server Side Caching Software


- Over 20 products introduced
- Some best for physical servers
 - Windows or Linux
- Others for hypervisors
 - Live migration/vMotion a problem
- Most provide write through cache
 - No unique data in server, only accelerates reads
- Duplicated, distributed cache for write back
- Applications cache too
 - SQL Server


- Does cache allow migration
 - Through standard workflow
 - To allow automation like DRS?
- Is cache cold after migration?
- Cache coherency issues
- Guest cache
 - Cache LUN locks VM to server
 - Can automate but breaks workflow
- Hypervisor cache
 - Must prepare, warm cache at destination

- Duplicate cached writes across n servers
- Eliminates imprisoned data
- Allows cache for servers w/o SSD
- Solutions
 - PernixData
 - Dell Fluid Cache

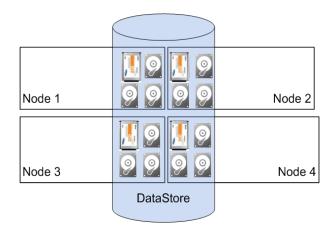
- Host managed cache
- PCIe SSD in Host
 - Write through cache
- All flash NetShelf
 - Persistent layer
- NFS interface to vSphere
 - Per-VM data services
- Founders from Data Domain
 - Dedupe of course



Flash Memory Virtual Storage Appliances

- Storage array software in a VM
- iSCSI or NFS back to host(s)
- Caching in software or RAID controller
- **Players**:

- /Mware
- **StoreMagic**


- HP/Lefthand
- Nexenta

Hyperconvirged Infrastructure (ServerSAN)

- Use server CPU and drive slots for storage
- Software pools SSD & HDD across multiple servers
- Data protection via n-way replication
- Can be sold as hardware or software
 - Software defined/driven

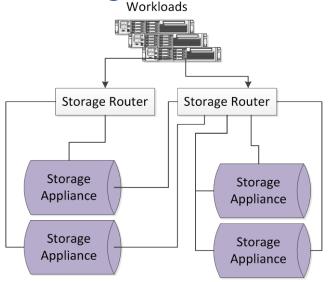
Memory ServerSAN Products

- VMware's VSAN
 - Scales from 4-32 nodes
 - 1 SSD, 1 HDD required per node
- Maxta Storage Platform
 - Data optimization (compress, dedupe)
 - Metadata based snapshots
- EMC ScaleIO
 - Scales to 100s of nodes
 - Hypervisor agnostic
- Atlantis Computing ILIO USX
 - Uses RAM and/or Flash for acceleration
 - Works with shared or local storage

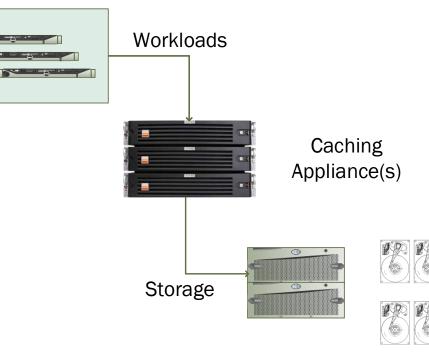
ServerSAN Architecture Differentiators

- Data protection model
 - Per node RAID?
 - N-way replication
 - Network RAID?
- Flash usage:
 - Write through or write back cache
 - SubLUN tiering
- Prioritization/storage QoS
- Data locality
- Data reduction
- Snapshots and cloning

Hyper-converged Systems


- Nutanix
 - Derived from Google File System
 - 4 nodes/block
 - Multi-hypervisor
 - Storage for cluster only
- Simplivity
 - Dedupe and backup to the cloud
 - Storage available to other servers
 - 2u Servers
- No 20 other vendors incl. VMware's EVO:RAIL

Questionable Idea 1: Smart Shelves


- How rack mount SSDs become arrays
- Adds data services/scale out in storage router
- Players:
 - Cisco Whiptail
 - Violin
 - XIO

Questionable Idea #2: Storage Network Caching

- "bump in the wire" cache
- Several vendors offered Fibre Channel versions
 - All discontinued
- NAS versions
 - Flopped in general market
 - Work as cloud gateways
 - Avere
 - HPC
 - DDN

All Flash Array?

- If you need:
 - More than 75,000 IOPS
 - For one or more high ROI applications
- Expect to pay \$4-7 GB
- Even with dedupe
- Think about data services
 - Snapshots, replication, Etc.

- Hybrids fit most users
 - High performance to flash, capacity from disk
 - All automatic
- Look for flash-first architectures
 - Usually but not always from newer vendors
- Ask about granularity and frequency for tiering
- Again data services
 - Snaps on HDD
 - Per-VM services

I'll give up Fibre Channel, When you pry it from my opig deed hands

- Decouples performance from capacity
- Strategic use
 - Pernix data write back cache w/low cost array
- Tactical solution
 - Offload existing array
 - Boost performance with minimal Opex

- Contact info:
 - <u>Hmarks@deepstorage.net</u>
 - @DeepStoragenet on Twitter