

Make Testing Work for You: Effective Performance Testing for Flash Storage

Training Session

Speakers / Trainers

Leah Schoeb

Manager, Solutions Reference Architecture and Performance Intel

Dennis Martin

Founder and President **Demartek**

 Peter Murray Principal Systems Engineer Load DynamiX

※Demartek®

intel

Flash Memory Summit 2015 Santa Clara, CA

1 – 1:15 pm Introductions – All

1:15 – 2:15 pm Flash storage testing overview – Leah Schoeb

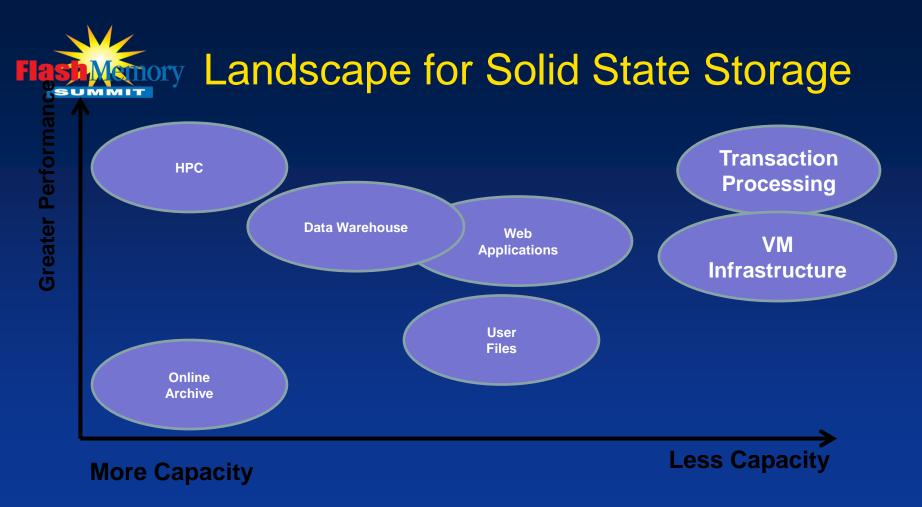
2:15 – 2:30 pm Break

2:30 – 3:30 pm Testing Flash storage using Vdbench – Dennis Martin

3:30 – 4:30 pm Testing flash storage using Load DynamiX – **Peter Murray**

4:350 – 5 pm Q&A – All

Flash Storage Testing Overview



Leah Schoeb

Considerations to Accurately Measure Solid State Storage Systems Leah Schoeb **Storage Solutions and Performance Manager** Intel

Advanced AFAs are a Different Animal

Flash behavior is unique

AFAs have a different performance curve

Advanced AFAs do not merely store data

- Most perform extensive metadata processing
 - Deduplication
 - Compression
 - Elimination of repeating character strings

These new arrays require a new performance testing methodology

Considerations for Solid State Storage Arrays

Data Services Management	Investment Protection	Support
Jata Reduction Deduplication Compression Thin Provisioning 	Self-healing techniques (Reliability)	Hypervisor - VMware vSphere - MS Hyper V
Replication - Local (writable) - Remote (Future)	Hardware Redundancy (Availability)	Scale out and Clustering
Management - Non-disruptive upgrades - REST APIs	Serviceability	Application & OS

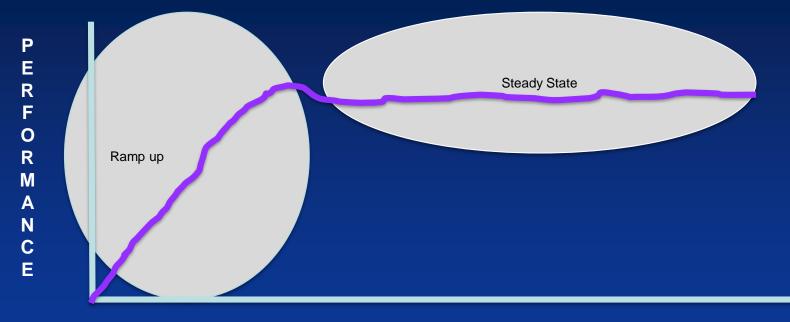
Measuring Accurate Performance w/ All Flash Arrays

Problem	 Traditional IO generation tools don't work – Inadequate tool sets Measuring new technology based on old assumptions – Don't Do It! Result – Inflated performance results, inaccurate measurements
Flash as a unique behavior	 Not a hard disk drive
Built-in data services	 Inline data reduction technologies
Different Performance curve	 Flash arrays measure differently than traditional systems

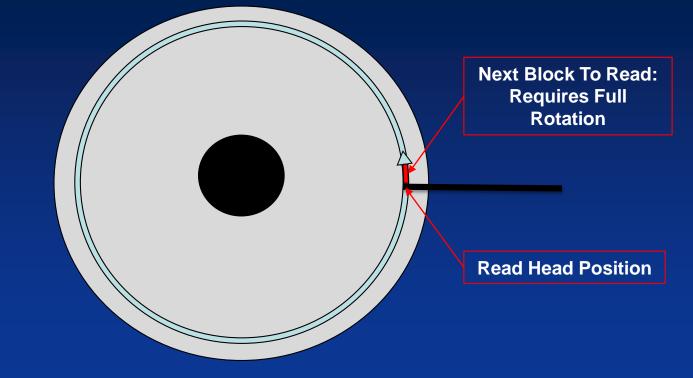
Modern All Flash Arrays vs. HDD Arrays

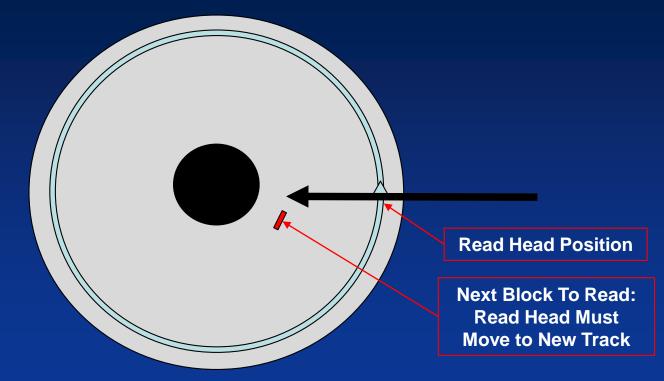
Modern Flash Arrays

- Wear Leveling
- Garbage collection
- Metadata Management
- Self-healing techniques
- Inline Data deduplication
- Inline Compression

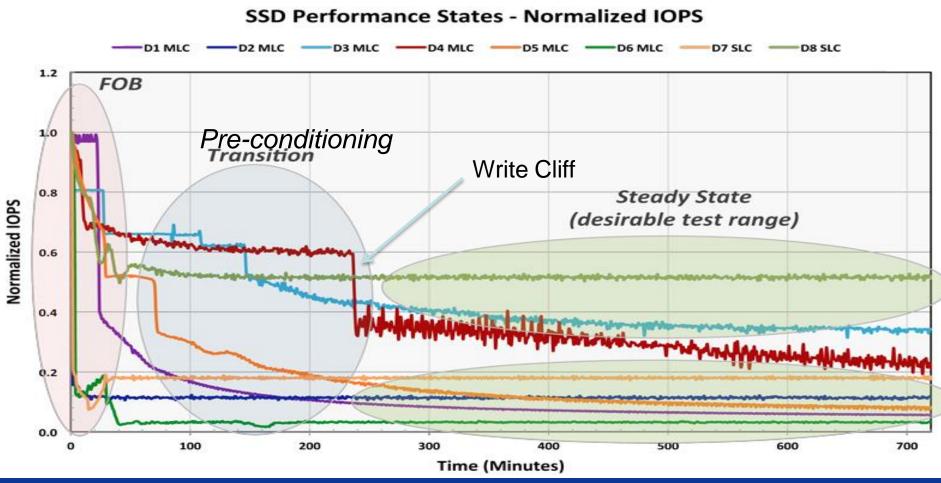

Traditional HDD Arrays

- Rotational Latency
- Seek Times
- Mechanical parts
- Controllers designed to handle HDD


	 Patterns written to disk as part of pre-conditi Patterns presented to an array during steady 	•
	random patternsCompressible patterns	
Varying pattern lengths		
Most IO generators are inadequate		
<.ËT#(âÝ.Èeªñn.ä2Õ.Šx7žv.xGöÃc;.¼Â<.ËT#(âÝ.Èeªñn.ä2Õ.Šx7žv.xGöÃc;.¼Â<.ËT#(âÝ.Èeªñn.ä2Õ.Šx		
Repeatable non- compressible pattern	Repeatable non- compressible pattern	Repeatable non- compressible pattern



TIME



Next Block To Read: Read Head Must Move to New Track And Wait One Full Rotation

Read Head Position

⁽SNIA SSSI Specification)

Methodology Overview

Pre-conditioning

Creating a realistic data set

Writing to create an application data set

Writing to exercise the array emulating an appropriate workload

Other tests to emulate realistic, simultaneous writing and reading ¹⁸

Involves breaking in entire flash array

- · Writing to every cell to achieve steady state
- Helps to ensure garbage collection during main test cycles

Goal: create a realistic data set

- Dedupeable and non-dedupeable blocks
- Compressible and non-compressible blocks
- Combined using varying block sizes
- Written to emulate hot spots and drift
- Written with appropriate dedupe/compression ratios

Write Performance Tests

Exercising array like an application does

- Writing at high load to find limits
- Writing using a data stream relevant to the data set
- Writing to emulate long-term application access

Goal: Exercising the array realistically

- Using a variation of the pre-conditioning data set
- Writing with same levels of data reduction
- Using multiple block sizes
- Including hot spots and drift to emulate temporality

Read/Write Workload Tests Scenarios

Tests that write and read simultaneously

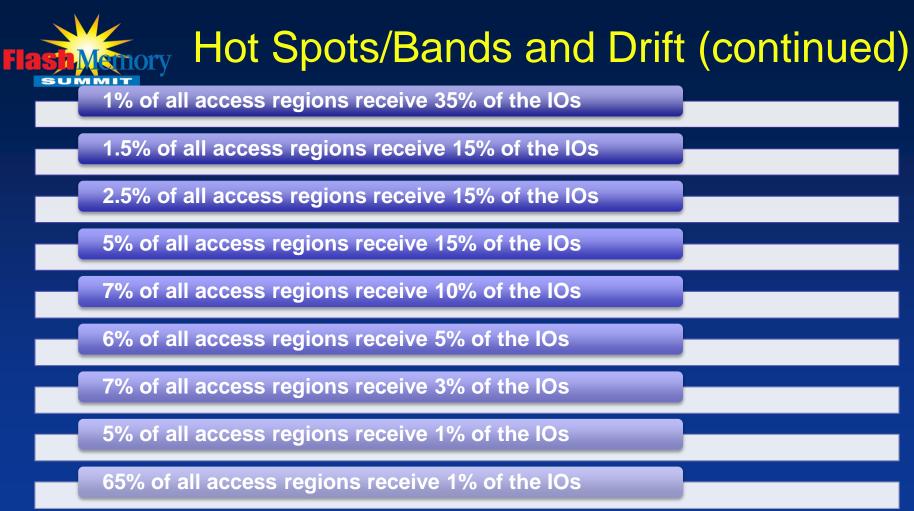
- All-write tests do not exercise an array the way an operating application does
- Reading must be combined with writing for realism
 - Tests using all-write data patterns, but reading also
- Run at expected application load

What if testing to determine capacity

Magnifying the load to test future expected loads

Methodology Components

Block sizes vary by application and operation	 •25K-35K average size is common •However, no application uses uniform block sizes • Sizes vary according to operations
OLTP transactions typically small	
Analytics, reporting typically larger	
AFA methodology should reflect real access	 Single application IO Blender (multiple applications) Either model requires multiple block sizes
Should reflect application/blender access	•E.g. 3% 4K, 15% 8K, 20% 16K, 52% 32K, 10% 64K


Hot Spots / Hot Bands and Drift

Application access is not uniformly random

- Hot spots are storage locations accessed more frequently than others
- Hot spot regions change over time
- Called drift
- E.g. Index file growth as transactions are processed

Hot Spot examples:

- Index Files
- Temp Files
- Logs
- Journals

Access Patterns

Tests must reflect realistic access patterns

· Should emulate real applications

- · Should avoid uniform random write distribution
- Should use multiple block sizes
- Both result in unrealistic access patterns that skew towards systems that maintain larger amounts of reserve flash memory

Methodology should include testing in the presence of:

- Backups
- Snapshots
- Replication

Complex Data Patterns

Pattern types:

Unique

- Repeating
- Uncompressible
- Compressible

Combined to represent data content representing:

- Data set at rest after pre-conditioning
- Data patterns that emulate traffic during operation

Data Content

Data content patterns	 Created before testing 	
Data content streams	Written during testing	
Repeating and non-repeating patterns	Random Compressible	
Varying pattern lengths		
<.ËT#(âÝ.Èeªñn.ä2Õ.Šx7žv.xGöÃc;.¼Â<.ËT#(âÝ.Èeªñn.ä2Õ.Šx7žv.xGöÃc;.¼Â<.ËT#(âÝ.Èeªñn.ä2Õ.Šx		
Repeatable non-compressible pattern	Repeatable non-compressible pattern	Repeatable non-compressible pattern
	<u>جــــــــــــــــــــــــــــــــــــ</u>	← 8/10/2015 →

Thread Count and Queue Depth

Helps find max performance for each:	Thread countQueue depth
Tests must find max IOPs an array can do per:	 Thread count (workers) Queue depth (outstanding I/Os) Combination of threads and queue depth
Increasing thread count	 past current requirements shows how array meets future needs

New SNIA Technical Working Group

Solid State Storage System Technical Working Group (s4twg.snia.com)

Why another Solid State TWG?

Address the unique performance behavior of SSS storage systems

Inline-advanced features

Measuring Performance of enterprise arrays vs. devices

System wide housekeeping vs devices level

Caching and DRAM tiering

VennorW

Identify, develop, and coordinate systems standards to enable accurate performance measurement for solid state storage systems

Produce a comprehensive set of specifications

Drives consistency of measurement guidelines and messages related to solid state storage systems Documents systemlevel requirements and shares these with other performance standards organizations

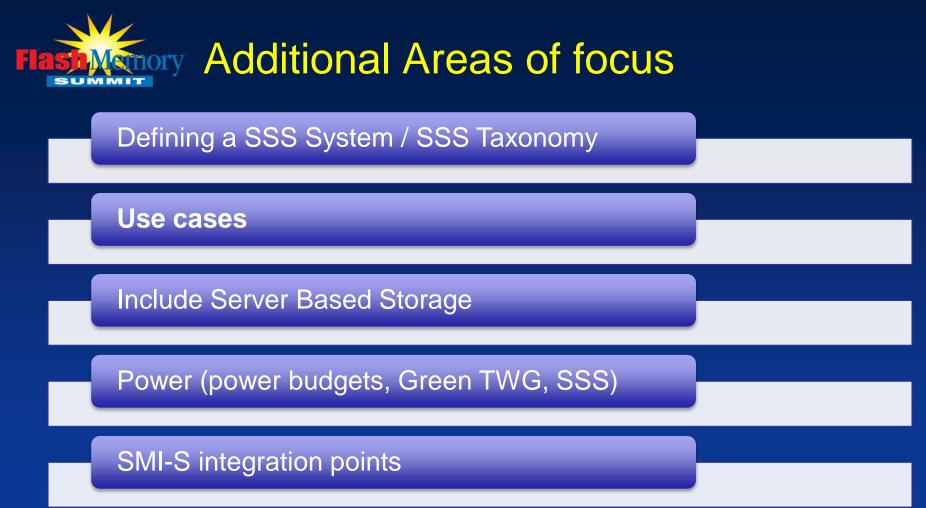
Develop a pecification	 measuring the performance of solid state systems.
des support for	 directly impact performance and

Includes support for inline advanced storage features

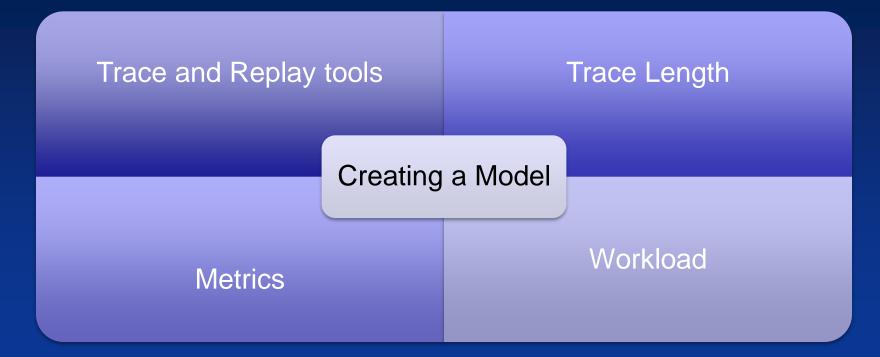
S

 directly impact performance and the long term behavior of the array.

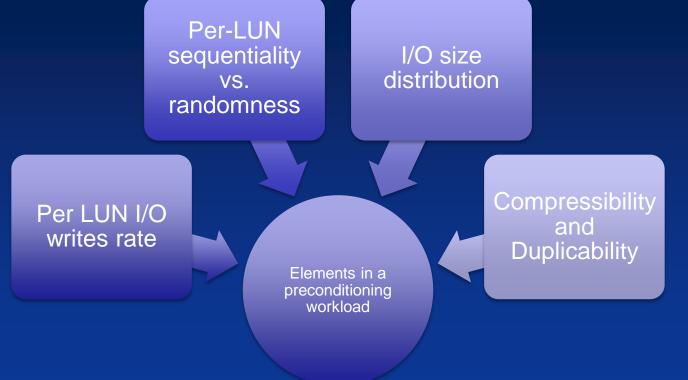
Note: This will build upon process methodology developed by the SSS TWG


Targeted Workload Modeling

Database


Server virtualization and VDI

Characteristics


- Access Patterns
- File access (structure, location, metadata, etc.)
- Data Reduction technologies (inline & post)
- Caching affects and SRAM tiering
- System wide vs device level housekeeping

Workload Preconditioning

Data Preparation – First Method

Write-only Fill to 90% of available space twice	 Ensure that all physical media has been written to once
Run one test using "fill LUNs", sequential access written with non-reducible data	 Use large block sequential access pattern to fill all available physical cells with non-reducible (non-repeating random) data
Write-only using random access with non reducible data	
Test minimum percentage writes for aging to be effective	

Data Preparation – Second Method

Run workload dependent pre-conditioning against full array Write to "Fill" LUNs, then "Test" LUNs LUNs to be part of data set Use test LUNs · May need to trim/erase portion of non-reducible data set Write-only to Fill LUNs twice (unused portion of · Ensure that all physical media has been written to once available space) First, run one test using Fill LUNs, sequential · Use large block sequential access pattern to fill all available physical cells with non-reducible (non-repeating random) data access written with non-reducible data · Write-only using random access with non reducible data Run second test on Fill LUNs Test minimum percentage writes for aging to be effective Run workload-dependent conditioning Run using write-only workload that uses workload dependent data and writes to the Test LUNs to fill remaining space simultaneously with workload-independent • Use reducible data set emulating an application • Run 2x of available Test LUN space

Run workloaddependent data stream to prepare data set

- Run test for 10 hours
- Measure whether steady state is achieved
- Use steady state as defined in PTS spec

Measure how an array performs as the percentage of the array is filled?

- Ensure array is ready to capture defensible metrics
- Write to both logical and physical space
- Ensure every cell on an array has been written to once
- Use only write component of the proposed workload

Ensure enterprise features are turned on

- Thin provisioning is turned on if available
- Deduplication/Compression
- Capture at various IO rates and measure variation

Industry Standard workloads

• SNIA Emerald (source: Green TWG)

- SPEC SFS
- SPC

Workload Generators

Tracing customer applications

Tiered Arrays unlike AFAs

This methodology valid for arrays that implement data reduction

but may not be appropriate for tiered arrays

A second methodology may be required,

especially for tiered arrays that do implement data reduction

All-Flash Arrays are unlike disk-based arrays

Data reduction dramatically changes performance characteristics

Tests must include rich data content to be valid

Tests must model real-world access patterns

Testing must be fair, unbiased and repeatable

- <u>www.evaluatorgroup.com</u> "Measuring Performance of Solid State Arrays"
- <u>www.loaddynamix.com</u> "Go Daddy White Paper: Storage Validation"

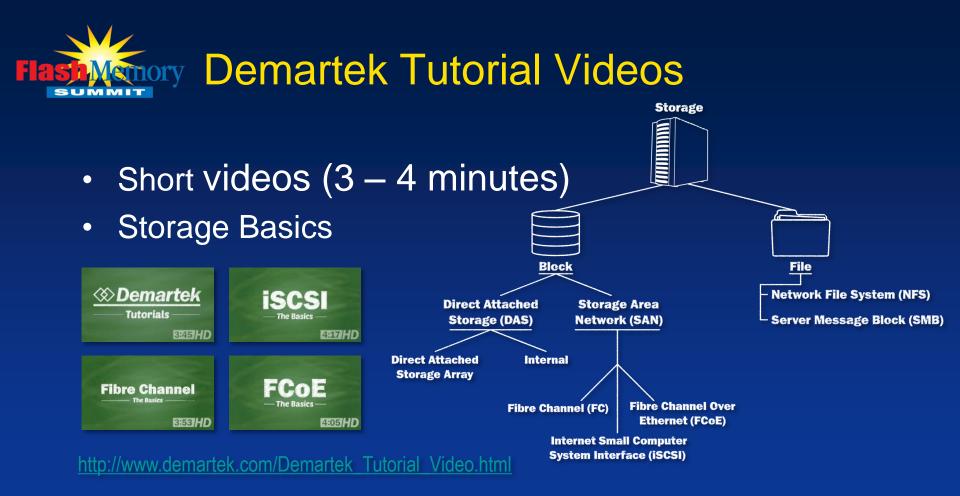
Flash Storage Testing Using Vdbench

Dennis Martin

Flash Storage Testing Using Vdbench Pre-conference session

- About Demartek
- Storage Performance Metrics
- Synthetic vs. Real-world workloads
- Vdbench

Many of the images in this presentation are clickable links to web pages or videos \rightarrow \blacksquare


- Industry Analysis and ISO 17025 accredited test lab
- Lab includes enterprise servers, networking & storage (DAS, NAS, SAN, 10GbE, 40GbE, 16GFC)
- We prefer to run real-world applications to test servers and storage solutions (databases, Hadoop, etc.)
- Demartek is an EPA-recognized test lab for ENERGY STAR Data Center Storage testin
- Website: <u>www.demartek.com/TestLab</u>

Enterprise Storage Architectures Flash Can Be Deployed In Any of These

- Direct Attach Storage (DAS)
 - Storage controlled by a single server: inside the server or directly connected to the server ("server-side")
 - **Block** storage devices
- Network Attached Storage (NAS)
 - File server that sends/receives *files* from network clients
- Storage Area Network (SAN)
 - Delivers shared *block* storage over a storage network

Interface vs. Storage Device Speeds

- Interface speeds are generally measured in bits per second, such as megabits per second (Mbps) or gigabits per second (Gbps).
 - Lowercase "b"
 - Applies to Ethernet, Fibre Channel, SAS, SATA, etc.
- Storage device and system speeds are generally measured in bytes per second, such as megabytes per second (MBps) or gigabytes per second (GBps).
 - Uppercase "B"
 - Applies to devices (SSDs, HDDs) and PCIe, NVMe

- Demartek Storage Interface Comparison reference page
 - Search engine: Storage Interface Comparison
 - Includes new interfaces such as 25GbE. 32GFC. Thunderbolt 3

http://www.demartek.com/Demartek_Interface_Comparison.html

Storage Performance Metrics

Storage Performance Metrics IOPS & Throughput

- IOPS
 - Number of Input/Output (I/O) requests per second
- Throughput
 - Measure of bytes transferred per second (MBps or GBps)
 - Sometimes also referred to as "Bandwidth"
- Read and Write metrics are often reported separately

Storage Performance Metrics Latency

- Latency
 - Response time or round-trip time, generally measured in milliseconds (ms) or microseconds (µs)
 - Sometimes measured as seconds per transfer
 - Time is the numerator, therefore lower latency is faster
- Latency is becoming an increasingly important metric for many real-world applications
- Flash storage provides much lower latency than hard disk or tape technologies, frequently < 1 ms

I/O Request CharacteristicsBlock size

- Block size is the size of each individual I/O request
 - Minimum block size for flash devices is 4096 bytes (4KB)
 - Minimum block size for HDDs is 512 bytes
 - Newer HDDs have native 4KB sector size ("Advanced Formation")

- Maximum block size can be multiple megabytes
- Block sizes are frequently powers of 2
 - Common: 512B, 1KB, 2KB, 4KB, 8KB, 16KB, 32KB, 64KB, 128KB, 256KB, 512KB, 1MB

I/O Request CharacteristicsQueue Depth

- Queue Depth is the number of outstanding I/O requests awaiting completion
 - Applications can issue multiple I/O requests at the same time to the same or different storage devices
- Queue Depths can get temporarily large if
 - The storage device is overwhelmed with requests
 - There is a bottleneck between the host CPU and the storage device

I/O Request Characteristics Access Patterns: Random vs. Sequential

- Access patterns refers to the pattern of specific locations or addresses (logical block addresses) on a storage device for which I/O requests are made
 - Random addresses are in no apparent order (from the storage device viewpoint)
 - Sequential addresses start at one location and access several immediately adjacent addresses in ascending order or sequence
- For HDDs, there is a significant performance difference between random and sequential I/O

I/O Request Characteristics Read/Write Mix

- The read/write mix refers to the percentage of I/O requests that are read vs. write
 - Flash storage devices are relatively more sensitive to the read/write mix than HDDs due to the physics of NAND flash writes
 - The read/write mix percentage varies over time and with different workloads

Storage Performance Measurement

- Multiple Layers
- There are many places to measure storage performance, including software layers and hardware layers
 - Multiple layers in the host server, storage device and in between

Latency example in a SAN

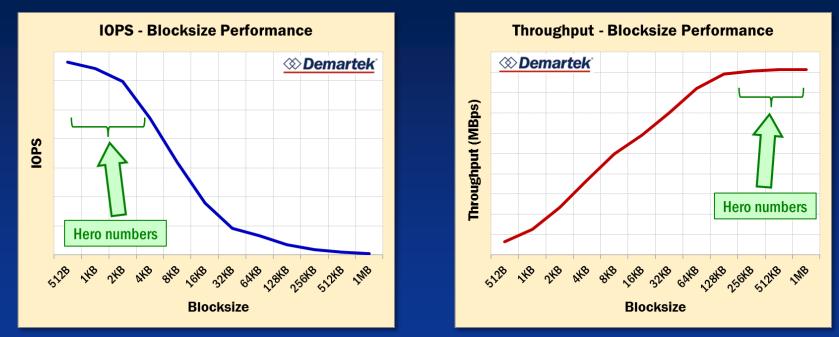
Synthetic vs. Real-world Workloads

Synthetic Workloads Purpose

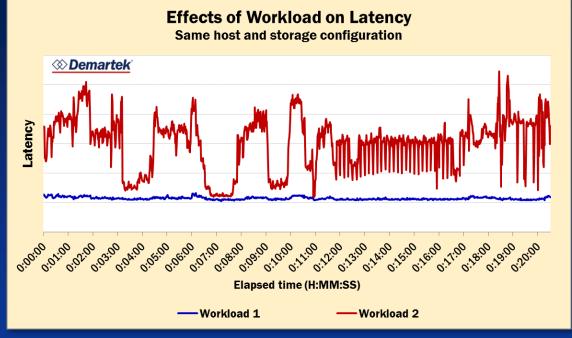
- Synthetic workload generators allow precise control of I/O requests with respect to:
 - Read/write mix, block size, random vs. sequential & queue depth
- These tools are used to generate the "hero numbers"
 - 4KB 100% random read, 4KB 100% random write, etc.
 - 256KB 100% sequential read, 256KB 100% sequential write, etc.
- Manufacturers advertise the hero numbers to show the top-end performance in the corner cases
 - Demartek also sometimes runs these tests

Synthetic Workloads Examples

- Several synthetic I/O workload tools:
 - Diskspd, fio, IOmeter, IOzone, SQLIO, Vdbench, others
- Some of these tools have compression, data deduplication and other data pattern options
- Demartek has a reference page showing the data patterns written by some of these tools
 - <u>http://www.demartek.com/Demartek_Benchmark_Output_File_Formats.html</u>


- Use variable levels of compute, memory and I/O resources as the work progresses
 - May use different and multiple I/O characteristics simultaneously for I/O requests (block sizes, queue depths, read/write mix and random/sequential mix)
- Many applications capture their own metrics such as database transactions per second, etc.
- Operating systems can track physical and logical I/O metrics
- End-user customers have these applications

- Transactional (mostly random)
 - Generally smaller block sizes (4KB, 8KB, 16KB, etc.)
 - Emphasis on the number of I/O's per second (IOPS)
- Streaming (mostly sequential)
 - Generally larger block sizes (64KB, 256KB, 1MB, etc.)
 - Emphasis on throughput (bandwidth) measured in Megabytes per second (MBps)
- Latency is affected differently by different workload types



Generic IOPS and Throughput Results

These performance curves generally apply to network and storage performance

The nature of each workload has a large impact on latency

Vdbench

- Vdbench is a storage I/O workload generator owned by Oracle corporation
 - <u>http://www.oracle.com/technetwork/server-storage/vdbench-downloads-1901681.html</u>
- Written in Java
 - Runs on a variety of Linux, UNIX and Windows systems
- Supports a variety of I/O workload parameters
 - Can be targeted at raw LUNs or volumes with file systems
- Used in SNIA Emerald and EPA ENERGY STAR Data Center Storage test specifications for block I/O testing

- The Vdbench Users Guide version 5.03 is available for download
- Vdbench has a large number of features and capabilities
- This example (and lab) will work with only a few basics

• Storage Definition (SD) sd=sd1,lun=i:\test1.txt,size=50m

 Workload Definition (WD) wd=wd_rnd,sd=sd1,seekpct=rand wd=wd_seq,sd=sd1,seekpct=0,streams=2

bory Vdbench Run Definition

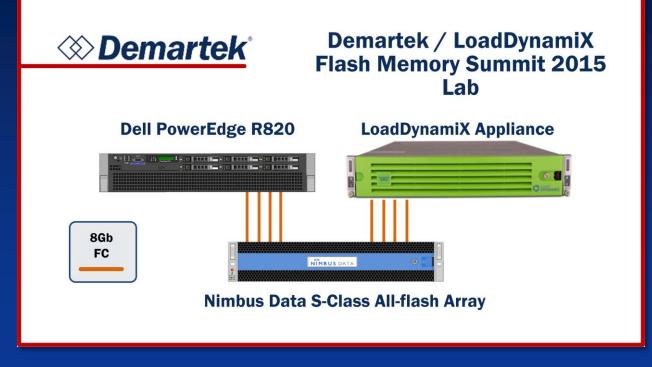
Run definition

Random writes test phase rd=rd_rw_final,wd=wd_rnd,rdpct=0,xfersize=8k,th=4 # Random reads test phase rd=rd_rr_final,wd=wd_rnd,rdpct=100,xfersize=8k,th=4 # Sequential write test phase rd=rd_sw_final,wd=wd_seq,rdpct=0,xfersize=256K,th=4 # Sequential read test phase rd=rd_sr_final,wd=wd_seq,rdpct=100,xfersize=256K,th=4

 My tests run in a command script that uses variables (script number and test run number) passed to it. The final command that is issued looks like the line below.

vdbench -f FMS_vdbench_script_01.txt -o FMS_output_01_Test_02

- -f option: points to the workload parameter file name
- -o option: name of output directory



- The output directory contains several files
- Summary.html is the main output file that has links to most of the others

- DEMO of output files from previous run
- DEMO of live system

FMS 2015 Demo Lab Configuration

Demartek public projects and materials are announced on a variety of social media outlets. Follow us on any of the above.

Sign-up for the Demartek monthly newsletter, *Demartek Lab Notes*. <u>www.demartek.com/newsletter</u>

Flash Storage Testing Using Load DynamiX

Peter Murray

8/10/2015 Flash Memory Summit All Rights Reserved

- 1. The Challenge
- 2. Current Approaches
- 3. Model workloads & Demo
 - Use performance metrics from an existing application
 - Create a realistic workload profile
 - Simulate the production application using the Composite Workload feature of LDX Enterprise
 - Review performance metrics; analyze results
- 4. Summary and Q&A

Your Oracle Application Challenges

- Constant pressure to meet performance and availability SLAs
- Quickly evaluate, deploy and de-risk new application rollouts

- Troubleshoot storage-related problems while "in flight"
- Implement storage-related changes (updates/upgrades) without compromising performance and availability

Who is Load DynamiX?

Leader in storage performance validation

Mission

Provide actionable insight into storage infrastructure behavior to assure performance & optimize cost

Product Suite

Load DynamiX Enterprise test management platform combined with load generation appliance

Flash Memory Summit 2015 Santa Clara, CA

The Load DynamiX Solution

1 1 Switch

Load DynamiX Enterprise software

Flash Memory Summit 2015 Santa Clara, CA

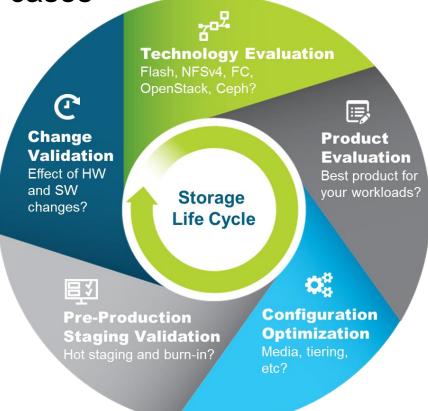
4000

3500

3000

2500

2000


1500

1000

ds Elan

Why IT Organizations Use Load DynamiX Use cases

Flash Memory Summit 2015 Santa Clara, CA

ORACLE

Load DynamiX Enterprise

- 1. Use performance metrics from an existing application
- 2. Create a realistic workload profile
- 3. Simulate the production application using the Composite Workload feature of LDX Enterprise
- 4. Review performance metrics; analyze results

Methodology: Workload Modeling

Create a workload model*

PRODUCTION STATS

(Perfstats, .nar, .btp, NFSstat, UniSphere, etc)

*DB apps do not present a single I/O profile

Flash Memory Summit 2015 Santa Clara, CA

I/O Metrics via Storage Monitoring Tool Via existing app on storage array

		Read	Write																
	Host	Response	Response		%	%	% Read		Avg I/O	Capacity									ļ
Name	IOs/sec	Time (ms)	Time (ms)	% Hit	Writes	Reads	Miss	WP Count	Size	(GB)	% Used '	%I/O Avg		Member	%RR	%SR	%RW %	%SW	1
arc	2.8	1.7	7.7	100	98.4	1.6	2.9	<i>)</i> 0	347	256	6 98	0.10	2745.9	4			93		7
dbf1	522.1	2.7	0.8	51.5	0.4	99.6	48.7	7 10.9) 19	256	6 95	19.01	2745.9	4	95	4			1
dbf2	448.5	2.9	0.8	51.3	0.1	99.9	48.7	7 2.4	16	256	5 100	16.33	2745.9	4	94	6			1
dbf3	316.6	1.8	3 1.2	82.5	5.2	94.8	18.4	4 96.8	8 19	256	5 100	11.53	2745.9	4	84	11	5		1
dbf4	297	1.8	3 0.9	42.9	0.9	99.1	57.6	6 8	3 29	100	0 100	10.82	2745.9	2	99		1		1
dbf5	235.6	1.4	1.2	87.2	4.8	95.2	13.4	4 65.8	8 17	256	5 100	8.58	2745.9	4	84	11	5		1
dbf6	220.2	1.7	1	83.9	5.6	94.4	17	7 58.9	20	256	5 100	8.02	2745.9	4	84	11	5		, I
dbf7	201.4	3.3	3 1.4	82.7	′	98.5	5 17.6	6 17.2	237	256	6 95	7.33	2745.9	4	94	4	1		1
dbf8	165.7	3.1	1.1	66.2	5.1	94.9	35.6	35.1	19	200	83	6.03	2745.9	4	91	3	5		1
dbf9	91.9	1.3	3 2.2	88.3	6.2	93.8	12.4	4 24.7	' 17	100	0 100	3.35	2745.9	2	82	11	6		
dbf10	90.3	3.3	3 2.3	3 71.6	27.7	72.3	39.1	1 145.7	48	200) 99	3.29	2745.9	4	73	1	26		
dbf11	7.6	5.4	1.3	57.9	17.8	82.2	51.3	6.3	105	256	5 100	0.28	2745.9	4	81	1	18		1
oraex	1.5	3.6	6 0.7	62.6	5 17.7	82.3	42.2	2 1.4	2	33	8 86	0.05	2745.9	1	82		17		2
quest	6.3	0.8	3 1.4	98.5	88.5	5 11.5	5 7.2	2 13.5	5 13	10	0 40	0.23	2745.9	1	9	2	86		4
redo1	70.2	6	6 0.7	87.9	96.9	3.1	20.3	63.6	28	32	2 93	2.56	2745.9	4	3		88		9
redo2	68.1	0.5	5 0.8	8 88	99.6	0.4	0.9	9 68.4	14	32	2 93	2.48	2745.9	4			90		9

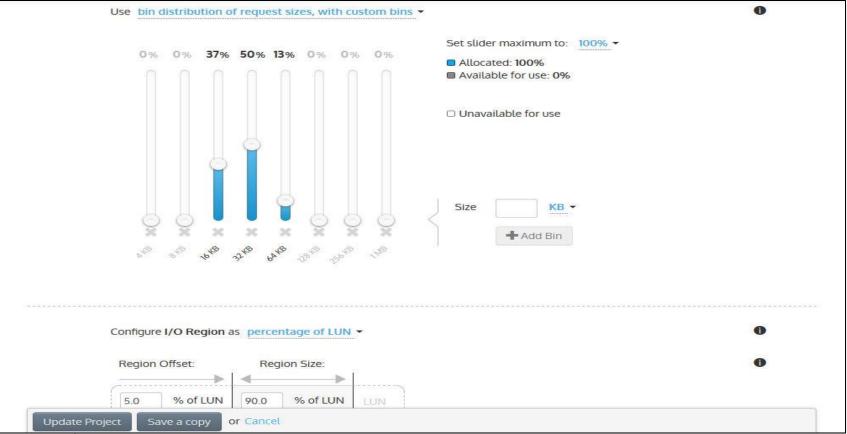
I/O Metrics from Existing App on Storage Array Sorted by common LUN I/O profiles

86

Name	Host IOs/sec	% Writes	%Reads	Avg I/O Size	Capacity (GB)	%RR	%SR	%RW	6SW
dbf1	522.1	0.4	99.6	19	256	95	4	0	0
dbf2	448.5	0.1	99.9	16	256	94	6	0	0
dbf3	316.6	5.2	94.8	19	256	84	11	5	0
dbf4	297	0.9	99.1	29	100	99	0	1	0
dbf5	235.6	4.8	95.2	17	256	84	11	5	0
dbf6	220.2	5.6	94.4	20	256	84	11	5	0
dbf7	165.7	5.1	94.9	19	200	91	3	5	0
dbf8	91.9	6.2	93.8	17	100	82	11	6	0
dbf9	90.3	27.7	72.3	48	200	73	1	26	0
dbf10	7.6	17.8	82.2	105	256	81	1	18	1
dbf11	201.4	1.5	98.5	237	256	94	4	1	0
redo1	70.2	96.9	3.1	28	32	. 3	0	88	9
redo2	68.1	99.6	0.4	14	32	0	0	90	9
quest	6.3	88.5	11.5	13	10	9	2	86	4
arc	2.8	98.4	1.6	347	256	0	0	93	7
oraex	1.5	17.7	82.3	2	33	82	0	17	2
dbf	2395.5	7.38	92.62	30.90	213.60	87	6	7	0
dbf11	201.4	1.5	98.5	237	256	94	4	1	0
redo	138.3	98.25	1.75	21	32	2	0	89	9
a, other	10.6	68.2	31.8	120.7	99.7	30	1	65	4

Load DynamiX Enterprise Dashboard

Dashboard			
Search system entities	Add -		
		1	
1. Setup	2. Workloads	3. Tests Results	4. Analyze
Setup appliances and test beds	Workload, project & project suite library	Running and completed test & test suite results	Analyze results of the test runs
Appliances (2) Test Beds (7)			Report Templates1Generated Reports1


Create Workloads for Each LUN Group

 ➢ ABC Composite Workload ♣ 30 ▲ admin 2014-10-03 2:50:43 PM 	Start 💉 📰 🔁 上 🕅 Scomposite Workload abc
 ✓ ABC Other ☆ ☞ ▲ admin 2014-10-03 2:46:12 PM 	Start 💉 😫 🔹 🖆 Workload abc
 ✓ ABC 22DF ☆ ☞ ① ▲ admin 2014-10-03 2:43:38 PM 	🕨 Start 💉 📰 🙆 主 🗐 Workload abc
 ✓ ABC DBF ☆ ➡ (896) ▲ admin 2014-10-03 2:39:08 PM 	Start 💉 😫 🔹 🗖 Workload abc
 ➢ ABC redo ☆ ☞ ● ▲ admin 2014-10-03 2:33:02 PM 	🕨 Start 💉 😫 🙆 👱 📼 Workload abc

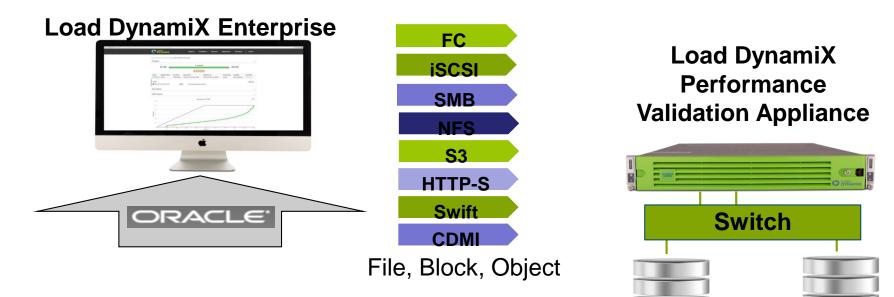
ABC DBF	Privacy: Public	
High Fidelity FC Workload	Created by: 2 admin 2014-10-03 2:39:08 PM	
× Workload × abc		
Access Pattern		*
CDB Length: (10) -		0
Data: Read 92%	8% Write	0
Writes		*
Configure Write Pattern as:		0
Random 100%	0% Sequential	

eads	Use the same parameters as in Writes (*)
Configure Read Pattern as:	0
Random 7% 93% Sequential Sequential I/O Direction: forward -	0
Use bin distribution of request sizes, with custom bins -	0
0 % 0 % 51% 12% 0 % 0 % 0 % Set slider maximum to: ■ Allocated: 100% ■ Available for use: 0%	
Unavailable for use	
Size KB	-
where and the star the star where where	

Configure I/O Region as percentage of LUN -	0
Region Offset: Region Size: 5.0 % of LUN 90.0 % of LUN	0
Use fixed Number of Asynchronous I/Os equal to 8	0
MPIO	(*)
Note that this settings is only applicable when used with MPIO enabled test bed	
MPIO Policy: Round robin -	
🔄 Enable ALUA Reconfiguration	
 Strate and depresentation of the strategy of the	
Error Handling	(*)

Use random - data content	0
Pre-test parameters	
Specify how to run pre-test: Before the test -	High Fidelity FC Workload pre-test
Configure I/O Region as percentage of LUN -	0
Region Offset: Region Size: 0.0 % of LUN	•
Repeats 1	
Load Properties	[

				L*
Generate actions per second	nd v load with 2396 actions/se	c and up to 11	concurrent workers	
Runtime parameters				<i>"</i>
Specify a test bed	▼ Test Bed			
Duration 90 S	econds -			
🔲 Retrieve pcap 🕚				
🕅 Retrieve summary file 🕚	E			
Pre-test				
Pre-test Yes	•		Specify if you would like	torun
Pre-test Yes High Fidelity FC Workload pre-t			Specify if you would like Pre-test	to run
Yes	test			e to run
Yes High Fidelity FC Workload pre-t	test			e to run



Build a Composite Workload on the Test Bed

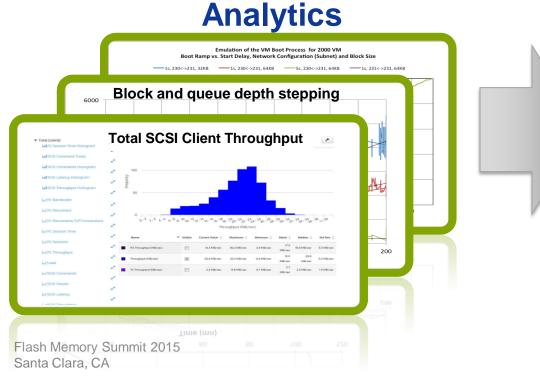
ABC Oracle TestBed		Privacy: Public
Description		Created by: L admin 2015-01-30 11:25:37 AM
		User group: Everyone -
Type in tags delimited by commas		
ABC Oracle		1 client , 4 services 🗮 🚍 🛨 🗸 🛪 Remove Group 🔹
Client 0 ×	0 WWPNs	FC Service X DBF 11 LUNs
192.168.21: 0 – FC_8G × ▼ MPIO	0 WWPNs	FC Service X Redo 2LUNs
	0 WWPNs ×	FC Service X 22DF (special block size)
	0 WWPNs	FC Service X Other 4 LUNs
Update Test Bed or Cancel		

2 Deploy Test Configuration & Run Emulations

Run Composite Workload

🔲 Retrieve pcap 🕚	
Retrieve summary file	0

Run it on		
ABC Oracle TestBed	* *	
ABC Oracle (4 of 4 links selected)		Run all compatible workloads on all available link
lients	Links & Workloads to Run	Services
Client 0 192.168.212.29:0 - port_FC	All workloads 0 WWPNs	FC Service DBF 11 LUNs
	All workloads 0 WWPNs	FC Service Redo 2LUNs
	All workloads 0 WWPNs	FC Service 22DF (special block size)
	All workloads 0 WWPNs	FC Service Other 4 LUNs


Run Composite Workload

Progress							*
	00:12		Running Stop Test			09:48	
State	Elapsed Time	Duration	Started on	Finished on	Started by	Analysis	Test Bed
Running	00:12	10:00	2014-12-09 2:53:54 PM		admin	Not Analyzed	ABC Tes
Logs 2014-12-	-09 2:53:55 PM	SUCCE	SS Project start successful				More
Descripti	ion						
Errors (0	fails & 0 aborts))					 >
All Chart	S						*
▼ Total [client]			Total [clien	t] Loa <mark>d</mark>		F	

3

Analyze Results

Insight

- Technology
 Evaluation
- Product Evaluation
- Configuration

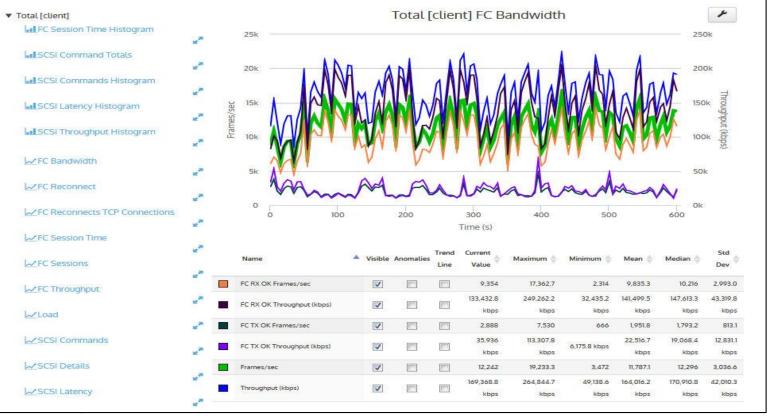
Optimization

Pre-production

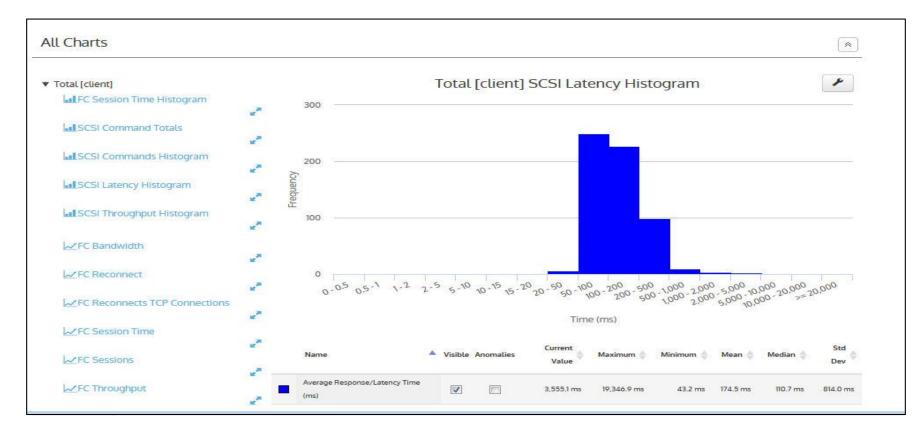
staging validation

Change validation

ICCCI The

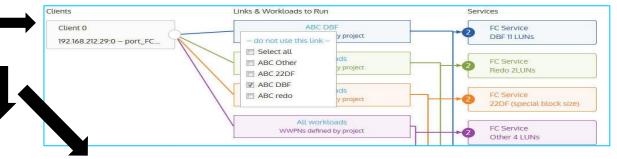

Analyze Report Results Throughput histogram

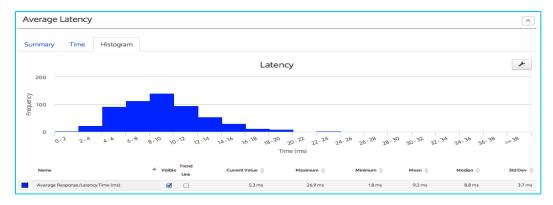
Total [client] SCSI Throughput Histogram * ▼ Total [client] FC Session Time Histogram 150 SCSI Command Totals 100 SCSI Commands Histogram 27 100 Frequency SCSI Latency Histogram -SCSI Throughput Histogram 50 K FC Bandwidth 27 FC Reconnect 0 0-2 2-4 4-6 6-8 8-10-10-12 12-14 14-16 16-18 18-20 0-22 2-24 -26 -28 -30 -32 2-34 -36 -38 FC Reconnects TCP Connections Throughput (MB/sec) Gession Time Name Visible Current Value Maximum Minimum Mean Median Std Dev L/FC Sessions 17.2 0 RX Throughput (MB/sec) 4.0 MB/sec 18.0 MB/sec 16.3 MB/sec 30.4 MB/sec 5.3 MB/sec MB/sec FC Throughput 10 0 20.8 Throughput (MB/sec) V 20.6 MB/sec 32.3 MB/sec 6.0 MB/sec 5.2 MB/sec MB/sec MB/sec Load *** 2.7 TX Throughput (MB/sec) 4.4 MB/sec 13.8 MB/sec 0.7 MB/sec 2.3 MB/sec 1.5 MB/sec MB/sec SCSI Commands SCSI Details SCSI Latency


Analyze Report Results

Bandwidth vs. Time

Analyze Report Results Latency histogram


Use Case Summary


Test DB performance pre-deployment via workload modeling

1. Characterize composite workload modeling workload with it with going late ery (and) contributes) as enclosed to an figures) as enclosed to an isolation of sitis al workload erais shore capture workload erais shore

(old)) arpaiyay
-------	------------

Host IOs/sec	% Writes	%Reads	Avg I/O Size	Capacity (GB)
522.1	0.4	99.6	19	256
448.5	0.1	99.9	16	256
316.6	5.2	94.8	19	256
297	0.9	99.1	29	100
235.6	4.8	95.2	17	256
220.2	5.6	94.4	20	256
201.4	1.5	98.5	237	256
165.7	5.1	94.9	19	200
91.9	6.2	93.8	17	100
90.3	27.7	72.3	48	200
70.2	96.9	3.1	28	32
68.1	99.6	0.4	14	32
7.6	17.8	82.2	105	256
6.3	88.5	11.5	13	10
2.8	98.4	1.6	347	256
1.5	17.7	82.3	2	33
0.1	11.5	88.5	4	33
0	0	100	0	0.5
0	0	100	0	0.5
0	0	100	0	0.5
0	2.5	97.5	0	33

Benefits of Using Load DynamiX

Optimize Storage Investment

 Eliminate over/under-provisioning, or stove-piping, by aligning your workload requirements to deployment decisions

Mitigate Risk

- Identify issues before deployment by testing at extreme scale and worst-case conditions
- Innovate with Confidence
 - Adopt the latest storage technologies without the fear of impacting your Oracle application performance

"If you can't validate technology before it's deployed into production, then you're flying blind."

Julia Palmer Performance Engineering

Manager

Learn More Oracle Workload Modeling

Info sheet: 2 pages

http://www.loaddynamix.com/wpcontent/uploads/2014/11/OracleWorkload_Inf osheet.pdf

Video: 4 minute overview <u>http://www.loaddynamix.com/resources/vide</u> <u>os-product/</u>

Q & A

8/10/2015 Flash Memory Summit All Rights Reserved