

NVM ExpressTM Management Interface

August 11, 2015

John Carroll, Storage Architect, Intel Peter Onufryk, Storage Director, Product Development, PMC-Sierra Austin Bolen, Storage Technologist, Dell

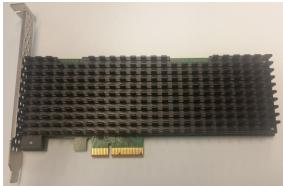
Agenda

- NVMe Management Interface Overview
 - Definition
 - Comparison to NVM Express Specification interface
 - Benefits over in-band management
 - To standardize or not to standardize
- NVMe-MI Usage
 - A real world example Automated Remote Health Monitoring
- NVMe-MI Architecture
 - NVM Subsystem, Port, Management Endpoint, Command Slot
- Overview of Features/Functionality
 - NVMe Management Commands
 - NVMe Admin Commands
 - PCle Commands
 - Control Primitives
 - VPD
- Standardization Status

NVMe Management Interface

What is the NVMe Management Interface?

 A programming interface that allows <u>out-of-band management</u> of an NVMe <u>Field</u> <u>Replaceable Unit</u> (FRU) or an embedded NVMe NVM Subsystem



Field Replaceable Unit (FRU)

FRU definition (Wikipedia):

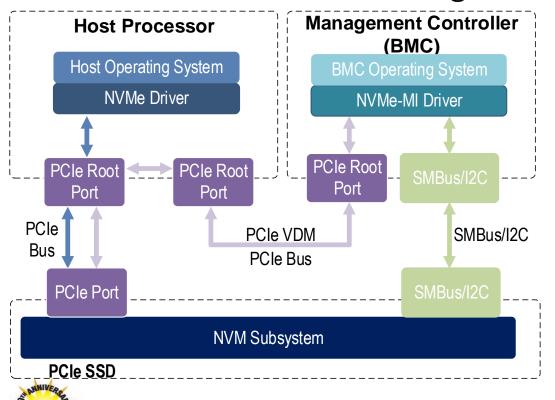
A circuit board, part or assembly that can be quickly and easily removed from a computer or other piece of electronic equipment, and replaced by the user or a technician without having to send the entire product or system to a repair facility.

Management Fundamentals

What is meant by "management"?

Four pillars of systems management:

- Inventory
- Configuration
- Monitoring
- Change Management


Management operational times:

- Deployment (No OS)
- Pre-OS (e.g. UEFI/BIOS)
- Runtime
- Auxiliary Power
- Decommissioning

In-Band vs Out-of-Band Management

- NVMe driver communicates to NVMe controllers over
 PCIe per NVMe Spec
- MC runs on its own OS on it own processor independent from host OS and driver
- Two OOB paths: PCle VDM and SMBus
- PCIe VDMs are completely separate from in-band PCIe traffic though they share the same physical connection

In-band vs Out-of-Band Management Cont.

In-Band Management Application

- Many host OSes to support (Windows, Linux, VMWare, etc.)
- Several different flavors/distros of each
- New revisions of OS and NVMe driver released over time
- Developing and maintaining a management application for every OS variant is resource/cost prohibitive
- Management features vary per OS

Out-of-Band Management Application

- Develop management application in one operating environment
- Works the same across any host OS the user installs
- Works across no OS cases (pre-boot, deployment)

Why Standardize NVMe Storage Device Management?

Reduces Cost and Broadens Adoption

- Allows OEMs to source storage devices from multiple suppliers
- Eliminates need for NVMe storage device suppliers to develop custom OEM specific management features

Consistent Feature Set

- All storage devices that implement management implement a common baseline feature set
- Optional features are implemented in a consistent manner

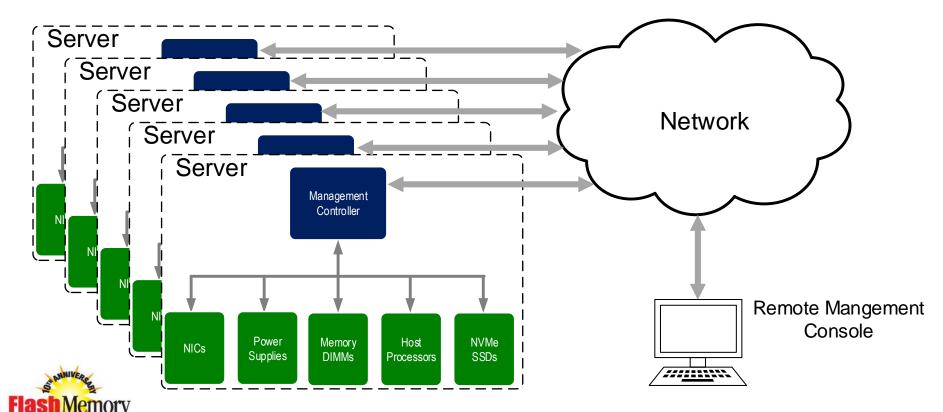
Industry Ecosystem

- Compliance tests / program
- Development tools

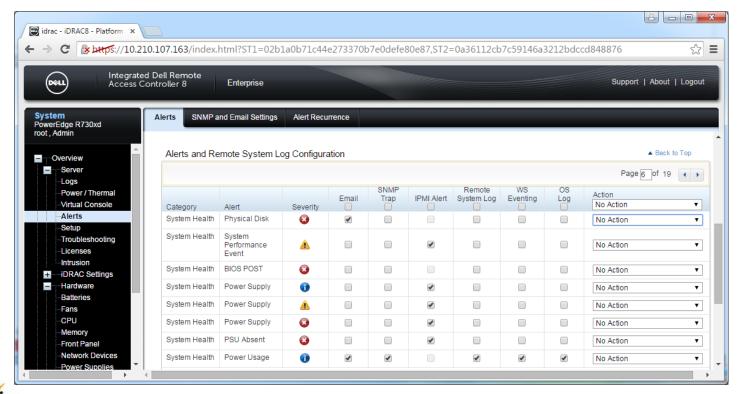
A Real World Example – Automated Remote Health Monitoring

The Problem:

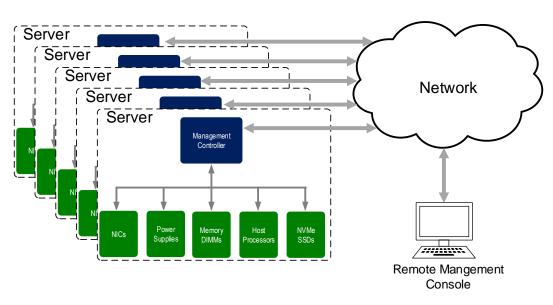
- Datacenter with hundreds of servers
- Each servers consists of dozens of Field Replaceable Units
- Some number of FRUs fail weekly (or even daily)
- Manually discovering and resolving issues due to failed FRUs is prohibitively time consuming and expensive


The Solution:

- Each server has a BMC to manage all FRUs
- Each BMC is connected to a network accessible via a remote management console
- BMC detects NVMe FRU failures using NVMe-MI and reports failures to a remote administrator



Remote Health Monitoring – Management Infrastructure



Remote Health Monitoring – Set up Alerts

Remote Health Monitoring – Detect Error Using NVMe-MI

- Management Controller issues NVM Subsystem Health Status Poll command to NVMe drive
- NVMe drive responds indicating a Critical Warning bit is set
- Management Controller then issues a Controller Health Status Poll command to the drive
- NVMe drive responds indicating a Reliability Degraded error occurred
- Management Controller sends email notification

Remote Health Monitoring – Receive E-Mail Alert

From: idrac-simpsons@smd.devops.dell.com Sent: Monday, August 03, 2015 11:11 AM

To: Austin Bolen@Dell.com

Subject: WIN-MMPK73JS9PO: Fault detected on drive in Bay ID 1 Slot ID 21.

System Host Name: WIN-MMPK73JS9PO

Event Message: The drive in Bay ID 1 Slot ID 21 reported a critical fault condition.

Date/Time: Mon Aug 03 2015 09:10:59

Severity: Critical

Detailed Description: Product documentation contains information on correct configuration. The failure could also be caused by a faulty component or related cabling. System performance may be degraded.

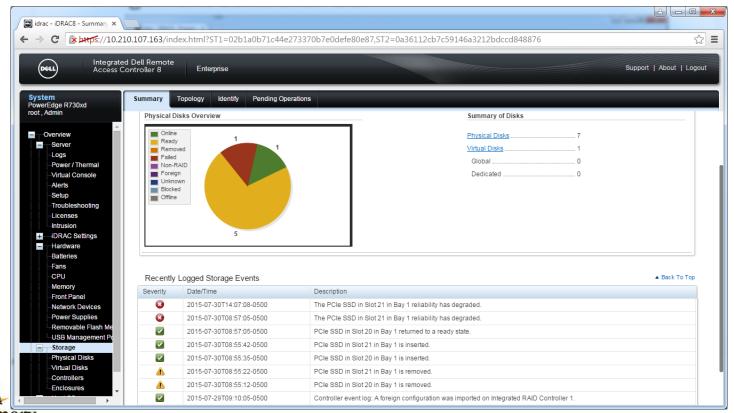
Recommended Action: Remove and re-seat the failed drive. If the issue persists, see Getting Help.

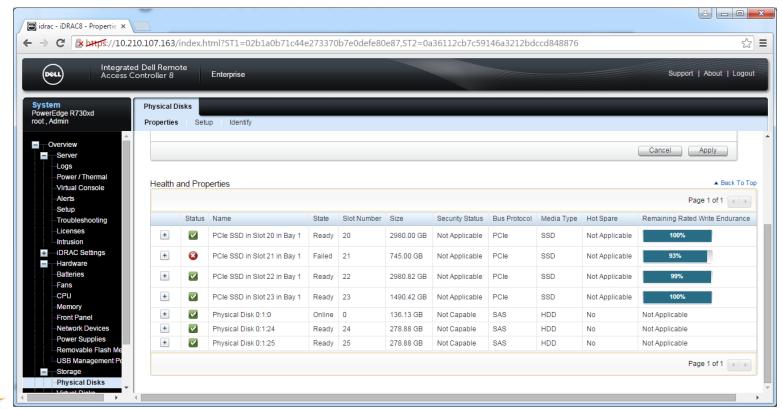
Message ID: PDR0001

System Model: PowerEdge R730xd

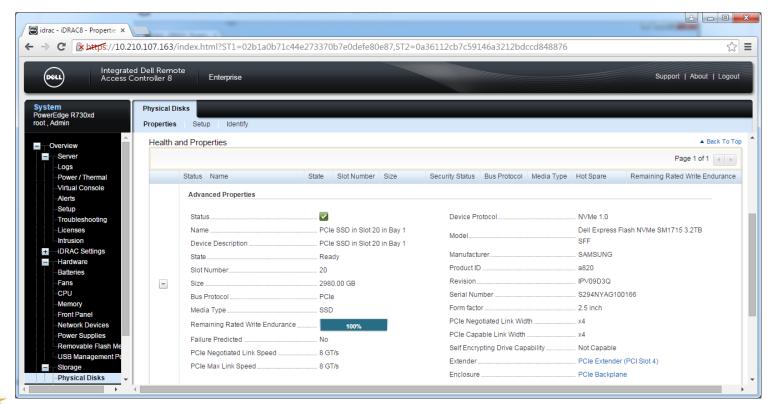
Service Tag: H9QVP22 Power State: ON

System Location: Rack 132 Slot 1 (2 U)


To launch the iDRAC Web Interface, click here: https://10.35.155.80. To launch the iDRAC Virtual Console, click here: https://10.35.155.80/console


E-mail alert sent if a drive health event occurs

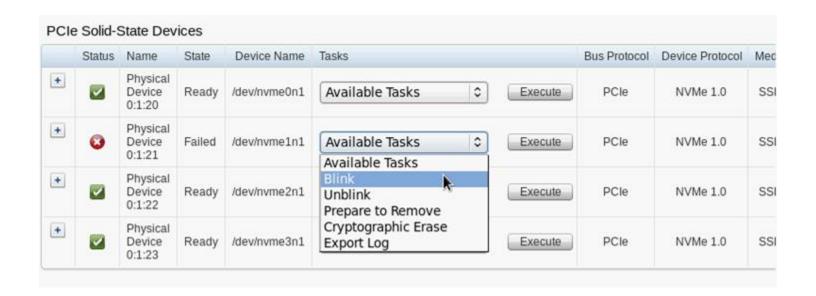
Remote Health Monitoring – Check Event Log



Remote Health Monitoring – Drives Overview

Remote Health Monitoring – Drive Detail

Management Controller GUI – Export Log Files



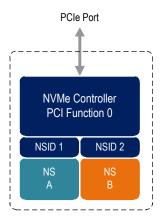
Remote Health Monitoring – Check Log File

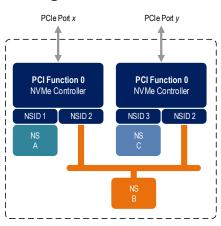
```
NVME_S1J1NYAF100038_0730095509.log
    ======= NVMe Device Identifier Information ========
 2 Model Number
                            = Dell Express Flash NVMe 400GB
    Physical Device Location = Bay ID 1 Slot ID 21
    Namespace Label
                           = /dev/nvme1n1
    Firmware Revision = 1.0.0
    Serial Number
                      = S1J1NYAF100038
    PCI Bus:Device.Function = 133:00.0
    ====== NVMe SMART/Health Information Log =======
10
    Critical Warning:
    Available Space Fallen Below Threshold = 0
12
    Temperature Exceeded Critical Threshold = 0
13
    NVM Subsystem Reliability Degraded
                                            = 1
14
    Media Read Only Mode
                                            = 0
     Volatile Memory Backup Failed
    Temperature
                                            = 34.85 Celsius (308 Kelvin)
    Available Spare
                                            = 84%
    Available Spare Threshold
                                            = 10%
    Percentage Used
                                            = 7%
    Data Read
                                            = 1.20 PB (1,197,442,070,528,000 bytes)
    Data Written
                                            = 1.21 PB (1,207,531,087,360,000 bytes)
```


Remote Health Monitoring – Blink Drive LED

Admin blinks the indicator LED for the failed drive Local Datacenter Technician finds and replaces faulty drive

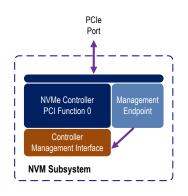
Agenda

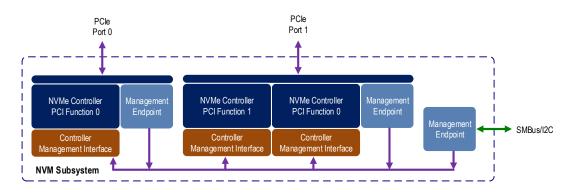

- NVMe Management Interface Overview
 - Definition
 - Comparison to NVM Express Specification interface
 - Benefits over in-band management
 - To standardize or not to standardize
- NVMe-MI Usage
 - A real world example Automated Remote Health Monitoring
- NVMe-MI Architecture
 - NVM Subsystem, Port, Management Endpoint, Command Slot
- Overview of Features/Functionality
 - NVMe Management Commands
 - NVMe Admin Commands
 - PCIe Commands
 - Control Primitives
 - VPD
- Standardization Status


NVMe Architecture (review)

NVM Subsystem - one or more controllers, one or more namespaces, one or more PCI Express ports, a non-volatile memory storage medium, and an interface between the controller(s) and non-volatile memory storage medium

NVM Subsystem One Controller/Port



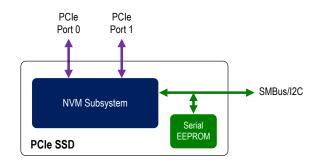

NVM Subsystem Two Controllers/Ports

NVMe Field Replaceable Units with NVMe-MI

An NVMe FRU consists of one and only one NVM Subsystem with

- One or more PCle ports
- An optional SMBus/I2C interface
- One or more Management Endpoints

VPD – Vital Product Data


Vital Product Data typically available in a serial EEPROM

NVMe-MI defined standard VPD contents including:

- Device Form factor
- Initial and peak power usage by power rail
- RefClk/SRIS capability
- and more ...

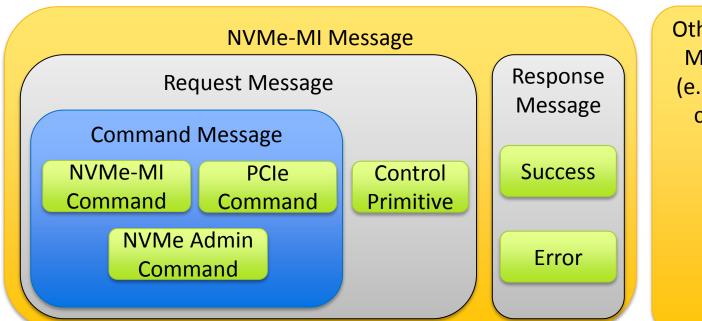
NVMe-MI makes VPD contents accessible out-of-band

NVMe-MI Defines the Protocol for Managing NVMe

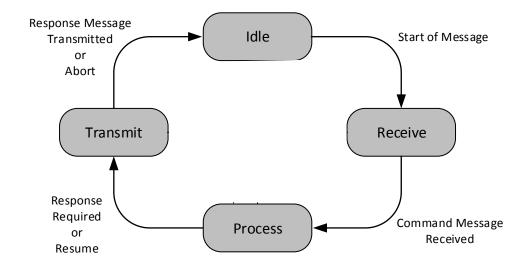
Leverage existing PCIe and SMBus

MCTP defines the transport layer

Refer to http://dmtf.org/ for more info on MCTP


NVMe-MI is the protocol for applications to information

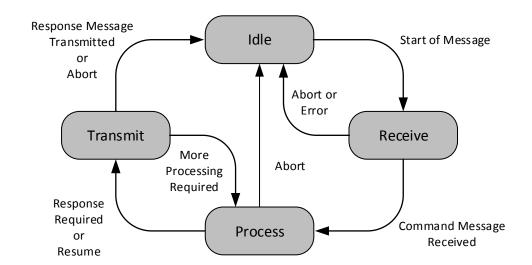
Types of MCTP Messages



Other MCTP Messages (e.g., MCTP control)

Command Slots

- Each Management Endpoint has two Command Slots to service Command Messages
- Each Command Slot follows this state machine



Command Slots

- Each Management Endpoint has two Command Slots to service Command Messages
- Each Command Slot follows this state machine

Management Interface Command Set

Discover Device Capabilities

Monitor Health Status

Modify Configuration

Command	O/M
Configuration Set	Mandatory
Configuration Get	Mandatory
Controller Health Status Poll	Mandatory
NVM Subsystem Health Status Poll	Mandatory
Read NVMe-MI Data Structure	Mandatory
Reset	Mandatory
VPD Read	Mandatory
VPD Write	Mandatory
Vendor Specific	Optional

NVMe Admin Commands

NVMe-MI defines mechanism to send existing NVMe Admin Commands out-of-band

Admin Commands target a controller in the NVM subsystem

Command	O/M
Get Features	Mandatory
Get Log Page	Mandatory
Identify	Mandatory
Firmware Activate/Commit	Optional
Firmware Image Download	Optional
Format NVM	Optional
Namespace Management	Optional
Security Send	Optional
Security Receive	Optional
Set Features	Optional
Vendor Specific	Optional

PCIe Commands

 PCIe Commands provide optional functionality to read and modify PCIe memory

Command	O/M
PCIe Configuration Read	Optional
PCIe Configuration Write	Optional
PCIe Memory Read	Optional
PCIe Memory Write	Optional
PCIe I/O Read	Optional
PCIe I/O Write	Optional

Control Primitives

 Control Primitives enable a Management Controller to detect and recover from errors

 Control Primitives fit into a single packet and do not require message assembly

Control Primitive	O/M
Pause	Mandatory
Resume	Mandatory
Abort	Mandatory
Get State	Mandatory
Replay	Mandatory

Summary

NVMe-MI standardizes out of band management to discover and configure NVMe devices

NVMe-MI 1.0 specification under member review – will be published on NVMe site after ratification

Architected for Performance