
NVMe – A End User Testimonial

Ravi Chari

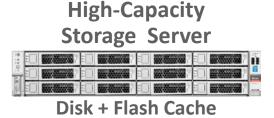
Technologist,

Non Volatile Memory Engineering, Oracle

End User Testimonial?

End user - the person who actually uses a particular product.

Testimonial- a public tribute to someone and to their achievements


Truth in Advertising!

- Oracle is a Member of the Board of Directors of NVMExpress.
- Oracle is a very active contributor to NVMExpress Eco System (Especially Solaris and Oracle Enterprise Linux)
- Oracle introduced its first NVMExpress Devices in Exadata X5
 Systems in December 2014.

Exadata X5 Storage Servers

Extreme Flash
Storage Server

All-Flash

State-of-the-art NVMe PCIe flash Consistently Low Response Times Optimized InfiniBand I/O Protocols

Exadata Storage Server Software

Smart Scan (SQL Offload)

Smart Flash Cache
I/O Resource Management
Hybrid Columnar Compression

Performance	Extreme Flash High-Capacity	
Analytic Scans	263 GB/s 140 GB/s	
OLTP Reads (8K)	4.14 M IOPS 4.14 M IOPS	
OLTP Writes (8K)	4.14 M IOPS 2.69 M IOPS	
Flash Latency	0.25 ms @ 2M IOPS	0.25 ms @ 1M IOPS

Capacity	Extreme Flash	High-Capacity	
Cores (for SQL offload)	16	16	
Disk (per server)	-	48 TB	
Flash (per server)	12.8 TB	6.4 TB	
Disk (full rack)*	-	672 TB	
Flash (full rack)*	179.2 TB	89.6 TB	

^{*} Full Rack : 8 DB servers, 14 storage servers

ORACLE / SUN Evolution to NVM Express

Year: 2011

SUN FLASH ACCELERATOR F20 PCIe CARD

KEY FEATURES

- Over 100K IOPS Performance
- Over 1,000 MB/s Bandwidth
- 96GB user capacity
- Embedded Flash controllers for high performance and compatibility
- Highly reliable, high endurance Sun FlashFire technology
- Compact Low-profile PCIe form factor to fit most servers

Year: 2012

SUN FLASH ACCELERATOR F40 PCIe CARD

KEY FEATURES

- 400 GB capacity
- Up to 149K IOPS (8K) performance
- Over 2.0 GB/s throughput
- 95 microsecond write latency
- Embedded Flash controllers for greater performance, compatibility and low CPU burden
- Advanced write endurance
- Proactive monitoring features
- Low-profile PCIe form factor

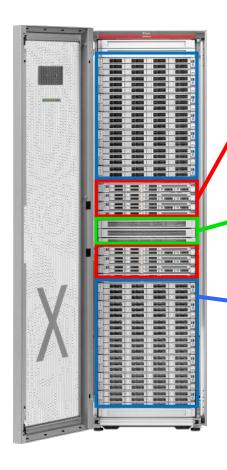
ORACLE / SUN Evolution to NVM Express

Year: 2013

SUN FLASH ACCELERATOR F80 PCIe CARD

KEY FEATURES

- 800 GB capacity
- 155K random IOPS (8K), 2.1 GB/sec throughput performance
- 84 microsecond write latency (8K transfer size)
- Advanced write endurance and proactive health monitoring
- Optimized with Oracle's systems and software.
- Compatible with Oracle's Database Smart Flash Cache and Advanced Compression


Year 2014

NVMExpress Based Cards & U.2 SSDs!

- Standardizes register set, feature set, and command set where there were proprietary PCIe solutions before
- Designed to scale for next generation NVM, agnostic to NVM type used
- Streamlined & simple command set (13 required commands)
- All parameters for 4KB command in single 64B command
- Supports deep queues (64K commands per queue, up to 64K queues)

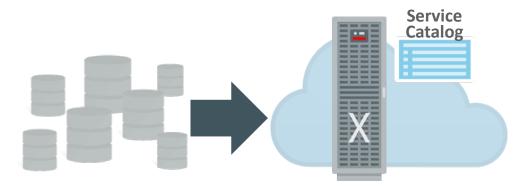
Exadata X5-2 Product Components

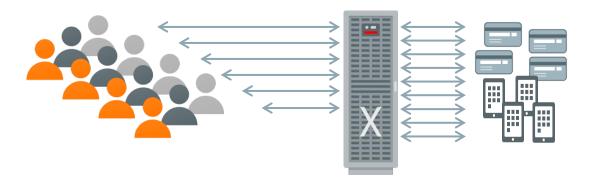

- Scale-Out Database Servers
 - Two 18-core x86 Processors (36 cores)
 - Oracle Linux 6
 - Oracle Database Enterprise Edition
 - Oracle VM (optional)
 - Oracle Database options (optional)
- Fastest Internal Fabric
 - 40 Gb/s InfiniBand
 - Ethernet External Connectivity
- Scale-Out Intelligent Storage
 - High-Capacity Storage Server
 - Extreme Flash Storage Server
 - Exadata Storage Server Software

X5-2 Database Server

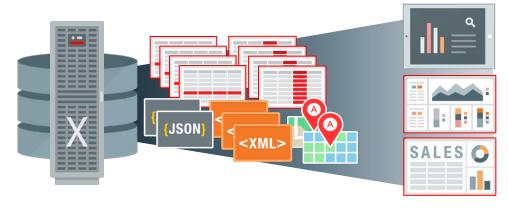
36 cores per server 256 – 768 GB DRAM

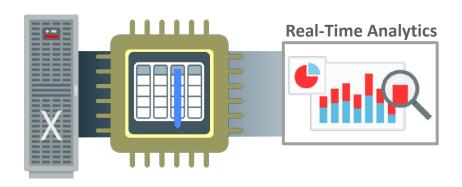
High-Capacity Storage Server


Extreme Flash Storage Server



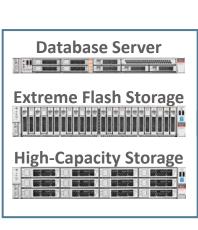
Exadata Use Cases


DATABASE CONSOLIDATION / DBaaS

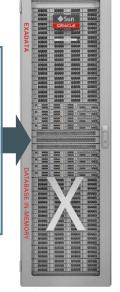

ONLINE TRANSACTION PROCESSING

DATA WAREHOUSING

IN-MEMORY DATABASE



Exadata Elastic Configurations


Optimize Exadata for any Workload

Full Rack

Any Kind
Any Quantity

DB In-Memory

15 DB Servers5 Storage Servers

576 DB Cores
13.3 TB RAM
192 TB Disk

Configuration Examples

Extreme Flash OLTP Machine

11 DB Servers 11 Storage Servers

396 DB Cores 8 TB RAM 140 TB Flash

Data Warehousing

8 DB Servers 14 Storage Servers

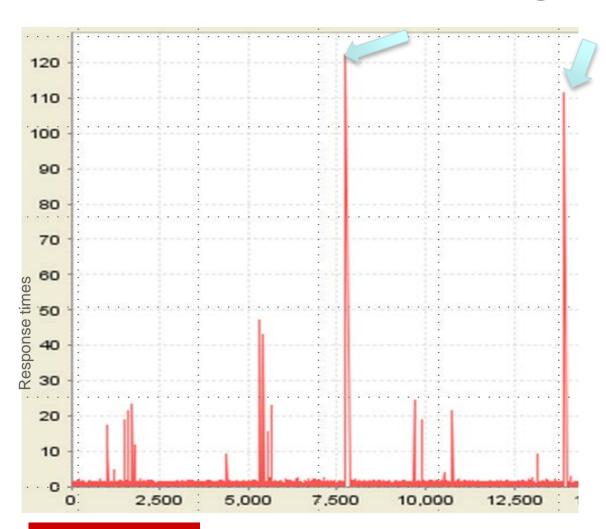
512 Cores 90 TB Flash Cache 672 TB Storage

Start with

2 Database Servers

3 Storage Servers

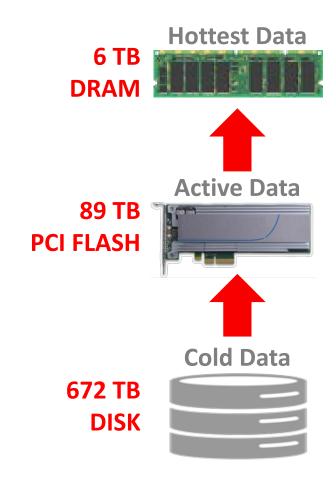
Oracle's Flash Architecture


- Scale out architecture
 - adds flash capacity and performance by adding storage servers
 - adds networking and CPU needed to process flash in one unit
- Database Aware Storage
 - Metadata about IO present on the cell
- Flash on the Storage Server enables sharing
 - A block on disk is stored in only one flash cache

Exadata Smart Flash Cache

- Understands different types of I/Os from database
 - Skips caching I/Os to backups, data pump I/O, archive logs, tablespace formatting
 - Caches Control File Reads and Writes, file headers, data and index blocks
- Write-back flash cache
 - Caches writes from the database not just reads
- RAC-aware from day one

Flash And Database Logs



- Flash has very good average write latency
- Greatly improves user transaction response time
- Flash occasional outliers, one or two orders of magnitude slower
- OLTP workloads dislike such large variations
- Oracle's Approach: Write to Flash and the DRAM cache in the disk controller simultaneously to even out the impact of outliers
 - the first to complete "wins" so that outliers are avoided (on either medium)

Most Cost Effective Database Storage

- Exadata software transparently gives best of memory, flash, disk
 - Cost and Capacity of SAS Disk Storage
 - I/Os of Scale-Out PCI Flash
 - Speed of In-Memory DB
- Hybrid Columnar Compression (HCC)
 - Industry best data compression (10x average) for analytics & archive
 - Data remains compressed in flash, memory, backups, standbys

Per standard DB Machine full rack 8 DB, 14 HC storage servers

Comparison to Old system

Metric	Exadata ODS	Monolithic Hardware ODS	Comparison
Single Block Reads	1.5 ms	3.8 ms	> 2x
Log File Synch Waits	.85 ms	5.7 ms	> 6x

Note: The Exadata ODS is over twice the workload as the previous version. In addition, the Exadata system is shared with several databases, while the Monolithic Hardware was dedicated.

General Comments On Latency & IOPs

What are the alternatives to NVM Express in Enterprise Use Cases?

What are the implications of New Non-Flash Non Volatile Memories?

Will new NVMs require something completely different?

Integrated Cloud

Applications & Platform Services

ORACLE®