

Active Flash Management Using Fully Autonomic Control

Conor Ryan CTO – Software Conor.Ryan@NVMdurance.com

Take Home Messages

- Routine *Normalized* intrinsic endurance increase of up to 7X in addition to other known approaches
- Multiplies other endurance methods and delivers up to 25X gain over default specifications
- Finding good control parameters is just the start…
	- Flash must be **actively managed** to minimize guard banding (due to variation)
- Active management must be **fast** at enterprise level, especially when doing
	- LDPC
	- Read retry
- Excellent cost/benefit ratio
	- BCH ECC; TLC Flash; Low tail latency; High Endurance

Take Home Messages

- **Routine** *Normalized* intrinsic endurance in other known approaches
- Multiplies other endurance methods and only default specifications
- Finding good control parameters is just the
	- **Flash must be actively managed to minimize**
- Active management must be fast at enter doing
	- **LDPC**
	- Read retry
- High Cost/benefit ratio
	- ▶ BCH ECC; TLC Flash; Low tail latency; High Endurance

New results

- ▶ 7X increase in endurance
- 1Y nm TLC NAND
- No read retry
- \blacktriangleright High endurance
- Low latency

c e

duran

SSD Desirable Characteristics duran c e Fast $\boldsymbol{\nu}$ $Chea\overline{p}$ $Good$ It depends on who you ask!

SUMMI

nory

SUMN

Business always wants cheaper SSDs

SUMMI

Cheaper flash is harder to manage

Cheap **x** Good ✗ Low endurance; read retry required; higher variation

Fast $\boldsymbol{\nu}$

 \degree NVMdurance 2015 6

Endurance

Flas

SUMMIT

ory

- \blacktriangleright Endurance
- **Retention**
- ▶ Secret killer of SSDs
	- ▶ Tail Latency (99th percentile of response time)
	- "Sure, you can get your data back, but it's going to cost you…"
- \blacktriangleright 1Y TLC
	- ▶ 700 p/e cycles
	- 12 months retention
	- ▶ 20+ read retries...
	- What if there is just ONE read retry?

NVM durance Endurance 400 p/e Retention 3 weeks

Endurance

NM_{durance}

600 p/e

Retention

2 weeks

Flash Memory

SUMMIT

Avoiding data loss

NM
durance No read retry means more

700 p/e cycles at **one year** retention!

No read-retry, more guard-banding

- Three pronged problem of using lowered geometry and increased density
	- **Less endurance**
	- **Less retention**
	- More effort to read data
- LDPC?
	- Powerful, but slow and costly
		- **□** Up to 60% more gates required in client SSDs

SUMMI

Speed of read retry

Successfully read a page:

- ▶ Read data into buffer (100µs)
- ▶ Toggle data out (50µs)
- ► ECC (approx. 50µs)
- ▶ Total: 200µs
- Each read retry adds:
	- ▶ Change parameters (~nanoseconds)
	- Repeat the process

Two steps to endurance

- NVMdurance Pathfinder
	- ▶ Discovers the endurance gain the "Potential" of the Flash
	- Suite of Machine Learning algorithms
	- ▶ Determine optimal registers for NAND chips before they go into product
- NVMdurance Navigator
	- Exploits the Pathfinder discoveries delivers on the potential
	- Autonomic system running on controller
		- Manages chip-to-chip variation down to the **block** level
		- □ Chooses register values at run-time from those discovered by Pathfinder

Two steps to endurance

- NVMdurance Pathfinder
	- ▶ Discovers the endurance gain the "Potential" of the Flash
	- Suite of Machine Learning algorithms
	- ▶ Determine optimal registers for NAND chips before they go into product
- NVMdurance Navigator
	- Exploits the Pathfinder discoveries delivers on the potential
	- Autonomic system running on controller

Manages chip-to-chip variation down to the **block** level

Chooses register values at run-time from those discovered by Pathfinder

NVMdurance Pathfinder

- Discover optimal parameter sets for each *stage o*f life
	- Gradually increase the "program/erase stress"
	- ▶ i.e. get increasingly more aggressive throughout life
- What is least amount of damage that we can cause at the *start* of life such that the flash is still operational at the *end* of life?
- What is the best read register set to use for this stage?
	- Doesn't need to rely on read retry
	- \blacktriangleright Can use it if available

Pathfinder

SUMMIT

Raw Bit Error Rate

Lifetime achieved as multiple of intrinsic endurance

SUMMIT

Lifetime achieved as multiple of intrinsic endurance

SUMMIT

Pathfinder -- Timings

Page Program Time vs P/E Cycles

Lifetime achieved as a multiple of the intrinsic endurance

- All results are volume tested in hardware
	- All backed up by real data
- *Normalized* results
	- Baseline calculated as intrinsic endurance at same retention level
	- ▶ Same level of ECC available
	- All increases are solely due to Pathfinder-discovered parameters
	- All assume presence of NVMdurance Navigator on the SSD

Program/Erase Stress Program/Erase Stress

SUMMIT

Program/Erase Stress Program/Erase Stress

Program/Erase Stress Program/Erase Stress

Approx. 7X increase in intrinsic endurance consistently achieved across:

- 2 vendors' devices
- 3 different geometries
- 3 different ECC levels
- Both MLC and TLC

Tail Latency

 \blacktriangleright Tail of the distribution of response times

SUMMIT

How fast can it be?

 \blacktriangleright Tail Latency for request queue

Reads \uparrow \uparrow \uparrow \uparrow write \uparrow

- Subsequent reads are delayed
	- Clever write management techniques can mitigate this
		- □ Caches, weak writes, etc.
		- □ Not without their own issues: Power failure recovery, Stronger ECC, etc.

□ Not quite the impossible dream it might first appear!

 $\textcircled{\iota}$ NVMdurance 2015 $\textcircled{\iota}$

- Life divided into stages
- ▶ Each stage has a set of program/erase registers
	- PLUS a set of read registers specific to that stage
	- ▶ "Wear-sensitive read"

 \degree NVMdurance 2015 \degree

 If all flash was the same (no variation) we could do it based on cycles

Stages

- Guard banding?
	- A significant amount of the endurance gains will be lost
- Read retry/LDPC impact?
	- ▶ Overlap would be less, but read time would be impacted at thresholds

Stages with stronger ECC/read retry

NIV

SUMMIT

Fla

Health, not cycles

- Change stage when the "health" of the flash has degraded enough
	- ▶ "Health Reading"
	- \blacktriangleright BER

Absolute and intermediate levels -- "Soft Error Thresholds"

- ▶ Operation times
	- Read, write, erase
- ▶ When the health of the device dictates; we change stage
- ▶ Change based on original Pathfinder training samples
- "Wear-leveling on steroids"
	- ▶ We don't just CYCLE blocks equally, we manage DEGRADATION equally

NVMdurance Navigator

- Wear blocks as much as possible
- Rest outliers as needed
- Change stage when LUN's health has degraded
- **Fig. 4** "From each according to his ability, to each according to his needs"
	- ▶ Don't target the WORST block, target ALL blocks
- Extract the full potential of Pathfinder parameter sets by
	- Tracking outliers
	- \blacktriangleright Tracking degradation
	- ▶ Change at last possible moment

Navigator Data

Track health by setting various thresholds

 \blacktriangleright BER

- ▶ Operation timings
- Controller informs Navigator of **Threshold Violations (TVs)**
	- ▶ E.g. ECC reports read over "soft threshold" or "critical threshold"
- Navigator monitors
	- Number of TVs for each threshold
	- **Levels of each threshold**
	- Number of TVs caused by each block

Navigator Actions

Block actions

- Rest a block that is causing too many TVs
- Add block to bad block list that is repeatedly causing problems
- LUN actions
	- ▶ Raise thresholds; gives detailed information on how LUN is degrading
- Stage actions
	- ▶ Too many TVs at high thresholds; change stage
	- \blacktriangleright Health close to change point; change stage
	- ▶ Cycles close to validated level; change stage

Health Metrics

- **Threshold levels**
	- BER; tProg; tRead, etc.
- **TVlist**
	- Size; rate
- Resting blocks
	- **Possible outliers**

duran $c e$ **Block details** TV rate Historical data <u>anla Innalala</u> Previous stages

Health Metrics

duran c e **Threshold levels** BER; tProg; tRead, etc. Block details TV rate TVlist Size; rate ▶ Historical data <u>an In Jood</u> **Previous stages** Resting blocks Block Actions \triangleright Possible outliers \triangleright Stage Actions Suspect block; move data ▶ Change stage **Possible outlier; rest block LUN Actions** ▶ Change reporting rate © NVMdurance 2015 $\qquad \qquad \vert$

Health Metrics

- **Threshold levels**
	- BER; tProg; tRead, etc.

TVlist

Size; rate

Resting blocks

Possible outliers Possible outliers

- ▶ Change stage
- **LUN Actions**
	- ▶ Change reporting rate

▶ Historical data

TV rate

Block details

Previous stages

- Block Actions
	- Suspect block; move data

c e

duran

- Possible outlier; rest block
- Probable outlier; bad block
- Etc. etc. Many actions possible!

Costs

Memory footprint

- DRAM 300 bytes per block
- NV storage 75 bytes per block
- Total per LUN (4096 blocks) \Box 4096 $*$ 300 = 1200KB ~ 1MB
- **Minimal configuration**
	- DRAM **zero** bytes per block
	- NV **zero** bytes per block

Activity

Level of Navigator activity varies by time of stage

More conservative

Flas

SUMMIT

)ľV

Navigator in operation

Threshold Levels

▶ BER level that is considered to be a Threshold Violation (TV)

▶ Soft Errors

- ▶ Housekeeping data; no action required
- ▶ Critical Errors
	- Some action required

□ Move data

 \Box Rest block

- **TV** rate
	- Proportion of reads causing TVs

 $\textcircled{\iota}$ NVMdurance 2015 63

Navigator Snapshots – zero retention

- Soft Error Threshold: 20
- Critical Error Threshold: 55
- Cycles: 500
- TV rate: 54%
- Action rate: 0.03%
- Block TV level: 100%

Threshold Violations

Navigator Snapshots – zero retention

- Soft Error Threshold: 30
- ▶ Critical Error Threshold: 55
- Cycles: 500
- \blacktriangleright TV rate: 0.34%
- Action rate: 0.03%
- Block TV level: 17%

Navigator Snapshots – medium retention

- Soft Error Threshold: 30
- Critical Error Threshold: 55
- Cycles: 500
- \blacktriangleright TV rate: 0.31%
- Action rate: 0.19%
- Block TV level: 28%

Navigator Snapshots – high retention

- Soft Error Threshold: 30
- Critical Error Threshold: 55
- Cycles: 500
- **TV rate: 0.40%**
- Action rate: 0.34%
- Block TV level: 38%

Summary

- Level of interaction tunable through thresholds
	- ▶ Low thresholds, richer information, more traffic
	- ▶ Mid-level threshold, little traffic (<1% of reads)
- Tiny minority require action on part of the controller
- As we approach stage change, rates increase
	- TV rate (constrained by Controller)
	- ▶ Critical (constrained by number of restable blocks)
	- ▶ Health (too many TVs at top threshold causes stage change)

Abstract Flash Trimming

- Access to test modes required
- Use *Abstract* access if necessary
	- ▶ "Blind" access to registers
- NVMdurance provides interface template
	- ▶ Connects high level functionality to flash at abstract level
		- **□** E.g. registers r1..rX
	- Works because Pathfinder learns RELATIONSHIPS between registers
- Flash foundry implements lookup table
- Lookup table encrypted with one-way encryption

No access to trim information

Latest Results

Product shipping soon

Altera Extends Life of NAND Flash Storage with Arria 10 FPGAs

- Altera reference design
	- Proof of concept will have 3X endurance, we are targeting 10X
- Features
	- **FPGA, fast and cheap to develop**
	- ▶ Field upgradeable/reconfigurable to read/write mix
	- \blacktriangleright Firmware runs in hardware
	- **Interchangeable NAND hardware** (including mixed)
- Up to
	- ▶ 9.6GBps of Bandwidth
	- 1875 KIOPS
	- ▶ 24 Flash Channels
- **Example and very, very good!** East, cheap and very, very good!

Conclusions

- ▶ Automatic and Autonomic
- Machine Learning automatically discovers
	- **parameter sets**
	- **static** parameter sets
	- the level of endurance that the flash **can** attain
- Lightweight software running on SSD autonomically
	- Manages degradation of flash
	- Minimizes tail latency by removing need for read retry
	- ▶ Actualizes the endurance realized by NVMdurance Pathfinder

Final Remarks

- Industry leading endurance gains
- Demo running at our booth
- Altera board with NVMdurance software at their booth

Stop by and see us at booth #829 Conor.Ryan@NVMdurance.com

