

Why DRAM Really Matters Inside SSDs

Chris Wojslaw

Sr. Manager - DRAM Technical Marketing

Santosh Kumar

Director - SSD AE/FAE

August 2015

Why DRAM Really Matters Inside SSDs

Session Objectives

- DRAM's Place Inside an SSD
- SSDs Features and DRAM Requirements
- Main DRAM Functions within SSDs
- Choose the Right DRAM for SSD Capacity
 - Case Study: DRAMs for 2017 Large Capacity Enterprise SSD
- Choose the Right DRAM for SSD Performance & Power
- Other Key DRAM attributes:
 - Organization
 - Form Factor
 - Reliability
 - Cost
- DRAM Longevity
- Conclusions & Call to Action

Flash Memory Typical SSD – Functional Block Diagram

Flash Memory SSDs Features and DRAM Requirements

Capacity: Max Capac

- Performance (IO): IOPS/MBPS/Latency/QoS
- Performance (Others): POR/SPOR/Resume
- Power: Active/Idle/Low Power Modes
- Others
 - Longevity
 - Cost
 - Reliability

	Features	Client SSD	Enterprise SSD
	Capacity	Low	High
	OP (Over provisioning)	0%	>= 7%
	DRAM Cache	Yes (Optional on Low-End SSDs)	Yes
	Performance (IO)	Lesser consistency across workload, Latency less critical	Higher Sustained steady state Perf. Lower latency
	Performance (others)	POR timing, Resume timing	POR/SPOR timing
	Data Retention (Power-off)	1 year, 30°C	3 months, 40°C
	Power	Low Low power modes support	High
	PLP (Power Loss Protection)	No	Yes (Hot plug use case)
	End-to-End Data protection	No	Yes
	DWPD (Endurance)	30 GB/day (client workload)	0.4 to 3 (Enterprise workload)
	UBER (Uncorrectable BER)	10 ⁻¹⁵	10 ⁻¹⁷
	MTBF	1.2 Mhr	2 Mhr

Memory Choosing the Right DRAM: Capacity

- In a typical SSD, DRAM are used for:
 - FTL (Flash Translation Layer) Map Table
 - Logs
 - Data Buffering
 - Journaling
- General Rule of Thumb:

SSD Capacity : DRAM Capacity = 1000 : 1

- Example: 1920 GB SSD requires ~2GB DRAM
- If Dynamic FTL implemented for Low End SSD
 - → DRAM size can be drastically reduced

SSD Max Capacity (Physical) in GB

Flash Memory Case Study: Upcoming 16 TB Enterprise SSD

- By 2017, Largest Enterprise SSDs = 16 Terabytes Capacity (Estimate)
- Using Rule of [SSD: DRAM Capacity] = [1000: 1], this SSD requires 16GB total DRAM
- > Given max. DDR4 density is 1GB today, this would require 16 FBGA devices
- NOT FEASIBLE for thermal reasons & physical space to fit 16 DRAMs in 2.5" SSD.

Solution: Collaborate with DRAM Suppliers on matching your SSD Roadmaps to our Higher Density, Smaller Package Memories

Choosing the Right DRAM: Performance

- DRAM Provides SSDs Improved bandwidths
 - DRAM Rule of thumb: Target 2X Interface Bandwidth
- Performance Improvement Realized from DDR4
 - Higher IOPS & Lowering latencies
 - Improved QoS (Quality of Service)
 - DDR4 can operate with 16 banks for higher concurrency
- DDR4 supports highest datarates: 2133, 2400, 2667
 - By 2016, DDR4 @ >2667 speeds are expected in MP
 - DDR3 max. speed = 2133

Choosing the Right DRAM: Power

- Higher performance & 38% reduction in component power by choosing DDR4 over DDR3/L
 - DDR4 has Low power & Temperature-Controlled auto refresh modes not available in DDR3/L

Flash Memory Choosing Right DRAM : DDR4 Advantages

Besides DRAM, as NAND density includes, power consumption increases

Choosing the Right DRAM – Org. & Size

Organization

- X4: Simpler routing → less #pcb layers
- X8, x16: Consumer/IT grade easier to procure versus X4

Physical size

- For 1.8", M.2 and smaller form factors, FBGA packaged DRAM saves pcb space
 - PoP packages are smaller but harder to manufacture & not as reliable as discrete BGA

Solid State Cards

Half Height & Low Profile PCIe

Flash Memory Choosing the Right DRAM: Density & Cost

Golden rule: As SSD capacity increases so must the DRAM density

Density:

- SK hynix supports mainstream DDR3 and DDR4 densities to enable entire SSD product line
- Increased flexibility to utilize different SSD SoC controllers

Cost:

- DDR4 retains small price premium over DDR3
- DDR3 vs. DDR4 crossover expected sometime in CY2016 (Depends on market)
- 8Gb vs. 4Gb DDR4 crossover also expected in CY2016 (Depends on market)

DDR3/DDR4 market outlook

Flash Memory Choosing the Right DRAM : Longevity

2015-16 DDR3 & DDR4 DRAM Roadmap

Product & Density		2H 2015	2016
DDR4	8Gb	x4/x8	x4/x8/x16
DDR4	4Gb	x4/x8/16	
DDR3	4Gb	x4/x8/16	

■ Need new technologies? LPDDR4? 16Gb DDR4? → talk to your DRAM supplier

Memory Why DRAM Really Matters Inside SSDs

- Conclusions & Call to Action:
 - For client SSDs, where low idle & sleep power, lowest cost, low capacity are important, DDR3/DDR3L provides the best solution
 - For enterprise SSDs, where high sustained performance and large capacity are important, DDR4 is recommended
- Advancements in Capacity & Performance for Enterprise SSD will drive solutions beyond 8Gb DDR4 – <u>Talk with your DRAM suppliers directly</u>

Thank You

Questions on this presentation? Please contact:

- Chris Wojslaw <u>chris.wojslaw@us.skhynix.com</u>
- Santosh Kumar
 santosh.kumar@us.skhynix.com