

3D NAND Technology – Implications to Enterprise Storage Applications

Jung H. Yoon

Memory TechnologyIBM Systems Supply Chain

© 2014 IBM Corporation

Outline

- Memory Technology Scaling Driving Forces
	- Density trends & outlook
	- Bit cost factors
- 3D NAND Design & Architecture key factors
- 3D NAND Process, Reliability & Quality
- 3D NAND Performance, Power
- 3D NAND Technology Implications to Enterprise Storage
- Summary

Silicon Technology Scaling Trends & OutlookshMemory

- \bullet 2D NAND continues to drive lithographic minimum feature scaling – 1y/1z nm in volume production
- \bullet Floating gate scaling to 1z nm (~15nm) > industry wide transition to 3D NAND cell in 1H16 enabling path for'Effective Sub 10nm' scaling
- \bullet Timing of 3D NAND implementation to Enterprise Storage will depend on 3D MLC/TLC Flash technology yield, reliability maturity, bit cost reduction, combined with Controller/Flash management enablement in 2016-2017 timeframe
- TLC currently accounts for ~40% of industry output, anticipate to exceed 65% by 2018
	- 3D TLC will drive continued bit cost reduction & opportunities for wider flash adaptation including enterprise storage

DRAM & Flash Scaling – Density Trends

DRAM scaling at sub 20nm node for 12/16Gbit – bit cost reduction vs increased technology complexity & fab investment requirements

Flash scaling continues via 2D > 3D NAND transition – enabling 256Gb & higher density MLC/TLC Flash

Memory Bit Cost Curve vs Scaling

- \bullet Steep increase in Fab Capital Expenditure @ sub 20 nm – driven by immersion ArF tooling & low K1 lithography, multiple patterning overhead
- Flash Bit cost reduction will continue at steep rate via 3D NAND scaling in 2016-2020 3D NAND yield, •quality and reliability is key
- DRAM \$ per GB take down slope significantly flattened at 1x/1y/1z nm in 2016-2019•

3D NAND Bit Cost

production, Fab thruput key factor for bit cost

3D NAND Design & Architecture Key Factors

Source: J. Jang et al, VLSI 2009

- 1. 3D NAND Cell array architecture: Page, block, plane size & structure
- 2. Program & Read algorithms
- 3. X/Y and Z directional cell-to-cell interference
- 4. ECC requirements & error characteristics

Memory 3D NAND Process, Reliability & Quality

3D NAND P/E Cycling

Vertical Charge Trap Transistor

3D Charge Trap – Key Characteristics

- 1. Reduction in Cell-to-cell interference due to lithographic cell spacing relaxation (\sim 15 nm > 4x nm)
- 2. Charge Trap Thin Tunnel Oxide less charge trap build up caused by PE Cycling => tight Vt distribution
- 3. Enables faster programming speed due with 1 pass programming algorithm

Source: Y. Cai, HPCA 2015

3D Charge Trap

Source: G. Van Den Bosch, IMW 2014

3D Charge Trap – Data Retention

- \bullet Fast initial charge loss due to shallow trapped electrons
- Data Retention fails due to charge spreading across channel (Z-direction) and •charge loss thru thin tunnel oxide (X-direction)
- • Understanding of High Temp & Low Temperature data retention mechanism critical – degraded data retention characteristics at > 125C anticipated
- 3D NAND Floating gate cell expected to have an advantage in data retention but •with endurance characteristics tradeoffs

- 1. High Aspect Ratio Channel Etch Profile (Distortion free, near vertical ϴ angle) & ONO film thickness control in z-direction
- 2. Issues at bottom gate has 'ripple effect' all the way up the channel
- 3. Staircase contacts from the Word-line drivers for each layer creates cell structure unique to 3D NAND – High A/R contact etch, alignment accuracy, contact resistance uniformity
- 4. Bit line contact @ top of channel interface properties & alignment accuracy
- 5. 3D NAND specific Defect control, metrology & methodologies needed
- 6. Wafer yield Drive wafer to wafer, across wafer, die-to-die, intra-die variability reduction => critical for 3D NAND Bit cost and Enterprise Quality & Reliability

3D NAND Cell/Process Architecture Challenges

- •Wordline RC delay – more Wordline decoder area needed to relax large RC Loading
- •Wordline capacitance increase (due to 3D NAND architecture) - Icc current increases
- Low cell current & variability due to poly-Si channel innovations for high mobility channel •needed for continued scaling of 3D NAND layer count, Poly Si microstructure engineering critical
- •Random Telegraph Noise (RTN) – charge trap, carrier mobility fluctuation

Techinsights Samsung V-NAND 2014

3D NAND Programming Schemesh Memory

- • 3D NAND allows fast programming speed due to 1 pass Programming algorithm – possible with reduced Cell-to-Cell Interference
- Dual/triple pages can be programmed simultaneously with less programming steps •compared to 2D NAND
- Reduction in tPROG > Reduction in latency > Higher performance \bullet
- BER reduction via elimination of Partial Page Programming/upper page read error scheme \bullet

Program time & Energy Consumption

- \bullet 3D NAND allows 1 pass Programming Algorithm => tPROG reduction
- • Potential for Energy Consumption reduction – via reduced tPROG
	- Normalized Energy Consumption = Vec x $ICC2$ x $tPROG / Page$ size •
	- Possible ICC current increases due to 3D NAND architecture specifics•
- Potential for Reduction in Flash Operation power and Sequential Write Power \bullet Efficiency => positive for OpEx related power/cooling costs

3D NAND Technology – Implications to Enterprise Storage

- \bullet **Density**
	- \checkmark 256Gb+ MLC/TLC Flash density with same footprint package
- • **Reliability**
	- \checkmark Driven by lower Cell-to-Cell Interference & Tighter Vt distribution with P/E cycling –
2D Charge Tran ve 2D Flosting gate needs to be further avaluated/understand 3D Charge Trap vs 3D Floating gate needs to be further evaluated/understood. Flash characterization critical
	- \checkmark Data Retention for 3D Charge Trap anticipated to worsen need thorough
evaluation 8 understanding of mechanism aver wide aperational 8 starses evaluation & understanding of mechanism over wide operational & storage temperature range

•**Performance**

- Faster tPROG due to 1 pass programming algorithm $-$ due to reduced Cell-to-Cell
interfacence interference
- \checkmark Dual/Triple pages simultaneous programming with less programming steps

•**Power Efficiency**

- ← Potential Power reduction driven by tPROG reduction
- \checkmark ICC current tradeoffs need to be understood for overall Power efficiency gains

3D NAND – Implication Flash Enterprise Storage

4 'V's of Data – Key Considerations for Big Data

SN Memory

• Performance – data must be analyzed faster > smarter decisions & maximize business value Higher IOPS, lower latency •**VELOCITY**• Volume of data captured, stored, shared, and analyzed continue to increase • Raw capacity growth Greater storage density in the •data center **VOLUME**• Unstructured data – files, email, social media consists >80% of all data Accommodate file & object storage •represented by unstructured data –best suited for Flash storage**VARIETY**• Rapidly declining Flash Bit Cost (MLC/TLC) via 3D NAND scaling Optimize economic value of data•– fast analysis of more data in different formats OpEx benefits – Low power/ •cooling costs Less data center physical space •due to higher density flash**VALUE3D NAND**

needed

3D NAND critical to Enterprise Storage - continue to drive Flash bit cost reduction, increases in Capacity, Reliability, Performance and Reduction in power consumption

© 2015 IBM Corporation

Summary

- 3D NAND introduction and scaling anticipate continued MLC/TLC bit cost reduction while driving Density \bullet growth over the next 5+ years. Bit cost scaling will be determined by Si process, device and design innovations focused on channel profile, vertical transistor, staircase process controls, decoder & peripheral circuit complexity, and process uniformity
- \bullet Timing of 3D NAND implementation to Enterprise Storage will depend on 3D MLC/TLC Flash technology yield, reliability maturity, bit cost reduction, combined with Controller/Flash management enablement in 2016-2017 timeframe
- \bullet TLC current accounts for ~40% of industry output, anticipate to exceed 65% by 2018
	- • 3D TLC will drive continued bit cost reduction & opportunities for wider flash adaptation including enterprise storage
- \bullet 3D NAND cell architecture
	- •Relaxation of lithographic pitch reduces Cell-to-Cell interference & tighter Vt distribution => Endurance & Performance gain opportunities anticipated
	- Data retention expected to be weaker 3D Charge Trap need further understanding of data retention •at operating & storage temperatures
- \bullet 3D NAND Process Technology unique challenges – fab quality process controls critical
- • 1 pass programming allows shorter tPROG => opportunity for performance gain & power consumption reduction
- \bullet 3D NAND Technology critical for Enterprise Flash Storage - driving Flash bit cost reduction, increases in Capacity, Reliability, and opportunity for Performance gain & OpEx benefits via Power consumption reduction