

3D NAND Technology – Implications to Enterprise Storage Applications

Jung H. Yoon

Memory Technology IBM Systems Supply Chain

© 2014 IBM Corporation

Outline

- Memory Technology Scaling Driving Forces
 - Density trends & outlook
 - Bit cost factors
- 3D NAND Design & Architecture key factors
- 3D NAND Process, Reliability & Quality
- 3D NAND Performance, Power
- 3D NAND Technology Implications to Enterprise Storage
- Summary

Silicon Technology Scaling Trends & Outlook

- 2D NAND continues to drive lithographic minimum feature scaling 1y/1z nm in volume production
- Floating gate scaling to 1z nm (~15nm) > industry wide transition to 3D NAND cell in 1H16 enabling path for 'Effective Sub 10nm' scaling
- Timing of 3D NAND implementation to Enterprise Storage will depend on 3D MLC/TLC Flash technology yield, reliability maturity, bit cost reduction, combined with Controller/Flash management enablement in 2016-2017 timeframe
- TLC currently accounts for ~40% of industry output, anticipate to exceed 65% by 2018
 - 3D TLC will drive continued bit cost reduction & opportunities for wider flash adaptation including enterprise storage

DRAM & Flash Scaling – Density Trends

DRAM scaling at sub 20nm node for 12/16Gbit – bit cost reduction vs increased technology complexity & fab investment requirements Flash scaling continues via 2D > 3D NAND transition – enabling 256Gb & higher density MLC/TLC Flash

Memory Bit Cost Curve vs Scaling

- Steep increase in Fab Capital Expenditure @ sub 20 nm driven by immersion ArF tooling & low K1 lithography, multiple patterning overhead
- Flash Bit cost reduction will continue at steep rate via 3D NAND scaling in 2016-2020 3D NAND yield, quality and reliability is key
- DRAM \$ per GB take down slope significantly flattened at 1x/1y/1z nm in 2016-2019

3D NAND Bit Cost

Fab wafer ramp-up, yield & quality maturity key in 3D NAND bit 6. cost. 3D NAND process specific Fab CaPex needed for initial production, Fab thruput key factor for bit cost

1.

2.

3.

3D NAND Design & Architecture Key Factors

Source: J. Jang et al, VLSI 2009

- 1. 3D NAND Cell array architecture: Page, block, plane size & structure
- 2. Program & Read algorithms
- 3. X/Y and Z directional cell-to-cell interference
- 4. ECC requirements & error characteristics

14 Memory 3D NAND Process, Reliability & Quality

3D NAND P/E Cycling

Vertical Charge Trap Transistor

3D Charge Trap – Key Characteristics

- Reduction in Cell-to-cell interference due to lithographic cell spacing relaxation (~15 nm > 4x nm)
- 2. Charge Trap Thin Tunnel Oxide less charge trap build up caused by PE Cycling => tight Vt distribution
- 3. Enables faster programming speed due with 1 pass programming algorithm

Source: Y. Cai, HPCA 2015

3D Charge Trap

Source: G. Van Den Bosch, IMW 2014

3D Charge Trap – Data Retention

- Fast initial charge loss due to shallow trapped electrons
- Data Retention fails due to charge spreading across channel (Z-direction) and charge loss thru thin tunnel oxide (X-direction)
- Understanding of High Temp & Low Temperature data retention mechanism critical – degraded data retention characteristics at > 125C anticipated
- 3D NAND Floating gate cell expected to have an advantage in data retention but with endurance characteristics tradeoffs

- High Aspect Ratio Channel Etch Profile (Distortion free, near vertical O angle) & ONO film thickness control in z-direction
- 2. Issues at bottom gate has 'ripple effect' all the way up the channel
- Staircase contacts from the Word-line drivers for each layer creates cell structure unique to 3D NAND – High A/R contact etch, alignment accuracy, contact resistance uniformity
- 4. Bit line contact @ top of channel interface properties & alignment accuracy
- 5. 3D NAND specific Defect control, metrology & methodologies needed
- Wafer yield Drive wafer to wafer, across wafer, die-to-die, intra-die variability reduction => critical for 3D NAND Bit cost and Enterprise Quality & Reliability

- Wordline RC delay more Wordline decoder area needed to relax large RC Loading
- Wordline capacitance increase (due to 3D NAND architecture) Icc current increases
- Low cell current & variability due to poly-Si channel innovations for high mobility channel needed for continued scaling of 3D NAND layer count, Poly Si microstructure engineering critical
- Random Telegraph Noise (RTN) charge trap, carrier mobility fluctuation

Techinsights Samsung V-NAND 2014

3D NAND Programming Scheme

- 3D NAND allows fast programming speed due to 1 pass Programming algorithm possible with reduced Cell-to-Cell Interference
- Dual/triple pages can be programmed simultaneously with less programming steps compared to 2D NAND
- Reduction in tPROG > Reduction in latency > Higher performance
- BER reduction via elimination of Partial Page Programming/upper page read error scheme

Program time & Energy Consumption

- 3D NAND allows 1 pass Programming Algorithm => tPROG reduction
- Potential for Energy Consumption reduction via reduced tPROG
 - Normalized Energy Consumption = Vcc x ICC2 x tPROG / Page size
 - Possible ICC current increases due to 3D NAND architecture specifics
- Potential for Reduction in Flash Operation power and Sequential Write Power Efficiency => positive for OpEx related power/cooling costs

3D NAND Technology – Implications to Enterprise Storage

- Density
 - ✓ 256Gb+ MLC/TLC Flash density with same footprint package
- Reliability
 - Driven by lower Cell-to-Cell Interference & Tighter Vt distribution with P/E cycling 3D Charge Trap vs 3D Floating gate needs to be further evaluated/understood. Flash characterization critical
 - Data Retention for 3D Charge Trap anticipated to worsen need thorough evaluation & understanding of mechanism over wide operational & storage temperature range

Performance

- Faster tPROG due to 1 pass programming algorithm due to reduced Cell-to-Cell interference
- ✓ Dual/Triple pages simultaneous programming with less programming steps

Power Efficiency

- ✓ Potential Power reduction driven by tPROG reduction
- ✓ ICC current tradeoffs need to be understood for overall Power efficiency gains

3D NAND – Implication Flash Enterprise Storage

4 'V's of Data – Key Considerations for Big Data

Sh Memory

l

3D NAND critical to Enterprise Storage - continue to drive Flash bit cost reduction, increases in Capacity, Reliability, Performance and Reduction in power consumption

- @ 2015 IBM Corporation

Summary

- 3D NAND introduction and scaling anticipate continued MLC/TLC bit cost reduction while driving Density growth over the next 5+ years. Bit cost scaling will be determined by Si process, device and design innovations focused on channel profile, vertical transistor, staircase process controls, decoder & peripheral circuit complexity, and process uniformity
- Timing of 3D NAND implementation to Enterprise Storage will depend on 3D MLC/TLC Flash technology yield, reliability maturity, bit cost reduction, combined with Controller/Flash management enablement in 2016-2017 timeframe
- TLC current accounts for ~40% of industry output, anticipate to exceed 65% by 2018
 - 3D TLC will drive continued bit cost reduction & opportunities for wider flash adaptation including enterprise storage
- 3D NAND cell architecture
 - Relaxation of lithographic pitch reduces Cell-to-Cell interference & tighter Vt distribution => Endurance & Performance gain opportunities anticipated
 - Data retention expected to be weaker 3D Charge Trap need further understanding of data retention at operating & storage temperatures
- 3D NAND Process Technology unique challenges fab quality process controls critical
- 1 pass programming allows shorter tPROG => opportunity for performance gain & power consumption reduction
- 3D NAND Technology critical for Enterprise Flash Storage driving Flash bit cost reduction, increases in Capacity, Reliability, and opportunity for Performance gain & OpEx benefits via Power consumption reduction