

Chip-Level RAID with Flexible Stripe Size and Parity Placement for Enhanced SSD Reliability

Jaeho Kim (Postdoctoral researcher @ Hongik Univ.) Donghee Lee (Professor @ Univ. of Seoul) Sam H. Noh (Professor @ Hongik Univ.)

Introduction & Motivation

• Flash SSD products with RAID-5 like data protection

Fusion-io's ioMemory (Adaptive Flashback Tech.)

Baidu's Software-Defined Flash

Micron's P420m (Redundant Array Independent NAND Tech.) Flash Memory Summit 2015 Santa Clara, CA

Shannon Systems's Direct-IO

2015 Santa Clara, CA

Introduction & Motivation

Applying RAID-5 into SSD internal

 Is RAID-5 suitable for flash chips?
 Is RAID-5 really beneficial for SSD?
 Quantitative analysis for reliability and lifetime?

 I/O workloads

Applying RAID-5 into SSD

Apply RAID-5 configuration to chips comprising the SSD device

Pros & Cons of RAID-5 in SSD

- Assumptions of quantitative analysis
 - Conventional SSD (denoted "ECC"): MLC 64GB with BCH code (4bit/512bytes) for ECC
 - RAID-5 SSD (denoted "RAID-5"): MLC 64GB applying RAID-5 without parity cache
 - Workload: Financial
- Pros of RAID-5: Improving reliability of SSD

How can we improve the reliability while prolong the lifespan of the SSD?

Ŋ

S

Outlines

Introduction & Motivation

• Challenges of RAID-5

- Our Solution: eSAP-RAID
- Evaluations
- Analytic Models of RAID Schemes
- Conclusion

Applying RAID-5 into SSD: Challenges #1,2

- Out-of-place update property of flash memory
 - Parity writes increase write amplification (WA) in SSD
- LBN (Logical Block Number) based striping feature of RAID-5
 - Parity update overhead (Read-modify-write) for small write requests
 - Data are written to specific chip depending on the LBN of data

- Open a window of vulnerability (for totally new data)
 - Small writes must wait until stripe fills up to write parity

Summary of the Challenges

- Out-of-place update property of flash memory
 - Parity update may decrease lifespan of flash memory
- LBN based striping feature of RAID-5
 - Must read old data or old parity for parity calculation
 - Data is written to specific chip depending on the LBN of data
- Open a window of vulnerability
 - Small writes must wait until stripe fills up to calculate parity

- Introduction & Motivation
- Challenges of RAID-5
- Our Solution: eSAP-RAID
- Evaluations
- Analytic Models of RAID Schemes
- Conclusion

Our Solution: eSAP-RAID

Elastic Striping & Anywhere Parity (eSAP)

Frequent parity update decrease lifespan of flash memory

* Must read data for new parity
* Skewed writes to particular chip lead to reduced lifespan

Solve

Dynamically construct a stripe based on arrival order of write requests regardless of LBN

Open a window of vulnerability

Stripe size can be flexible with **partial stripe parity**

Write Cost: RAID-5 vs. eSAP

Assumptions

- Stripe 0 and 1 are already constructed in the SSD
 - Stripe 0: D0, D1, D2, and P0
 - Stripe 1: D3, D4, D5, and P1

Updated data separately arrive in D0', D0'', and D1' order

- How can we protect **new data 'D8'** before parity write?
 - RAID-5 may loss incomplete stripe due to without parity
 - eSAP can protect the new data with partial stripe parity (flexible stripe size)

Outlines

- Introduction & Motivation
- Challenges of RAID-5
- Flash-aware New RAID Architecture

• Evaluations

- Analytic Models of RAID Schemes
- Conclusion

Evaluation Setup

- SSD extension with the DiskSim, which is a simulator for SSD
 - 8 flash memory chips, a stripe consists of 16 pages
- Evaluate three configurations
 - ECC: No parity (similar to RAID-0)
 - RAID-5: Conventional RAID-5 scheme
 - eSAP: Elastic Striping and Anywhere Parity-RAID (Proposed scheme)
- Characteristics of I/O workloads

Workload	Total Data Req.(GB)	Write Ratio
Sequential	21.8	1.0
Random	30.2	1.0
Financial	35.7	0.81
Exchange	101.2	0.46
MSN	29.7	0.96

Response time & Life span

- eSAP reduces the response time over RAID-5
- eSAP prolongs the life span of SSD over RAID-5
- RAID-5 performs worst, especially for the financial workloads
 - Small writes incur heavy parity overhead

- Parity overhead of RAID-5
 - Reads for parity calculations (PR)
 - Parity writes (PW)
- Parity overhead of eSAP
 - Parity writes (PW)
 - Partial stripe parity writes (PPW) for small write request

- Introduction & Motivation
- Challenges of RAID-5
- Flash-aware New RAID Architecture
- Evaluations
- Analytic Models of RAID Schemes
- Conclusion

Analytic Models of RAID Schemes

- Goals of analytic models
 - Find expected lifespan (P/E cycles) of SSD with various I/O workloads
 - Project long-term reliability according to the lifespan of SSD
- Two factors affecting lifespan of SSD
 - Write Amplification Factor (WAF)
 - Garbage collection cost
 - Parity Write Overhead (PWO)
 - Term derived from this work (Mathematical model)

Parity Write Overhead (PWO)

- Parity write overhead are determined by
 - 1) Size of RAID stripe
 - 2) Size of write request
 - 3) Starting position of write request within a stripe
- From the PWO,
 - We can estimate the number of page writes and erase operations

• Expected lifespan of SSD with eSAP

Flash Memory Projecting Long-term Reliability

- Procedure of projection
 - 1) Extract characteristics of I/O workloads and parameters of SSD
 - 2) Put extracted values into analytic models to expect lifespan of SSD
 - 3) Calculate reliability equations with expected lifespan of SSD
 - 4) Find Uncorrectable Page Error Rate (UPER) from the calculation

Analysis of Long-term Reliability

- Uncorrectable Page Error Rate (UPER) and life span of SSD
 - Financial workload

Conclusion

- Reliability of flash based storage is getting more crucial
- A solution to improve reliability is to apply RAID configuration into SSD
 - Conventional RAID-5 is not suitable
 - eSAP: A novel flash-aware RAID scheme is proposed
- Derive the analytical model of RAID schemes in SSD
 - Derive performance and lifespan models of RAID schemes in SSDs
 - Project long-term reliability of SSDs

Thank you! & Questions?

Please refer to the paper for details,

"Chip-Level RAID with Flexible Stripe Size and Parity Placement for Enhanced SSD Reliability", IEEE Transactions on Computers, 2015

Jaeho Kim (kjhnet@gmail.com)

Backup Slides

Accuracy of Model

- Accuracy ratio of the model compared to the experimentally obtained
 - Most of the cases, the difference between the model and the experimental results are within 10%

Workloads	RAID-5	eSAP
Sequential	0.92	0.95
Random	0.99	0.91
Financial	0.99	0.93
Exchange	0.93	0.99
MSN	0.98	0.95

Flash Memory What is Determination factor for WAF & PWO ?

• WAF and PWO are determined by characteristics of the I/O workloads

Workload	Scheme	# of Write req.	Avg. size of Write	Avg. <i>u</i> of victim blocks for GC
	RAID-5	368K	62K	0
Sequential	eSAP	184K	124K	0
	RAID-5	3617K	9К	0.66
Financial	eSAP	416K	78K	0.64

Flash Memory Summit 2015 Santa Clara, CA

utilization

• Bit requirements for BCH

Figure 1. ECC Bit Correction Requirements Trend for SLC and MLC NAND

Flash Memory Summi From:1) ECC Options for Improving NAND Flash Memory Reliability – Micron2015 Santa Clara, CA2) Signal processing and the evolution of NAND flash memory – Anobit, 2010

RBER of MLC vs. TLC

32