

DSP for Signal Fidelity on ONFI-4 Bus Ravi Motwani Intel Corporation Non-Volatile Memory Solutions Group

#### **ONFI-4 channel**

- Data Rates higher than 1.6GHz
- ONFI-4 channel exhibits a notch
- Frequency in the notch region is lost
  - Irrecoverable inter-symbol interference (ISI)



#### **Proposed Solution**

- Uses sampling rate converters
- Digital filters





# **Critically Sampled Signal** $f_{max}$ 0 f $f_s = 2f_{max}$ $f_{max}$ 0

Signal content in channel notch is lost





# Oversampling causing excess bandwidth

• Excess Band-width required







#### **HF content translation-I**



• Scheme requires using Band-pass and Band-stop filters





#### **HF content translation-II**



- Excess bandwidth created using oversampling
- HF content translated to avoid the notch
- Scheme uses only Low-pass and High-pass filters



## Notch Mitigation proposed scheme

- Ideally  $X'(\omega) = X(\omega)$
- Perfect reconstruction condition-

 $H_1(\omega)C(\omega)F_2(\omega) \ \left(e^{j\omega_0 n}\right) + H_2(\omega)C(\omega)\left(F_1(\omega)(e^{j(-\omega_0)n})\right) = 0$ 

 $H_1(\omega)C(\omega)F_1(\omega) + H_2(\omega)(e^{j\omega_0 n})C(\omega)(F_2(\omega)(e^{j(-\omega_0)n})) = e^{j\omega n}$ 

 $H_1(\omega)C(\omega)F_1(\omega) + H_2(\omega)[C(\omega)(e^{j\omega_0 n})](F_2(\omega)(e^{j(-\omega_0)n})) = e^{j\omega n}$ 



•  $H_1(\omega)$  is a band-stop/LP filter and  $H_2(\omega)$  is a bandpass/HP filter





#### Tradeoffs

- Steeper the filter responses, lesser is the oversampling ratio  $\frac{L}{M}$
- Effective data rate increases are then lower
- Steep responses means filters impulse response is larger
  - More computations at GHz frequency range
- Problem is that the filters have a complex impulse response





#### **Perfect Reconstruction Filter Banks**

- M-Channel Uniform Filter Bank
- Used in Sub-band coding







# **DMT System- ADSL**

• Biorthogonal Filter Bank







#### Filter Impulse Response

- Frequency Response of the filters
- Filters in the notch region
- Do not transmit in those channels



#### **2M Channel Filters**

- Start with a prototype filter  $p_0(n)$
- Analysis filters  $h_k(n)$ ,  $h'_k(n)$  and synthesis filters  $f_k(n)$ ,  $f'_k(n)$

$$h_{k}(n) = \sqrt{2}p_{0}(n)\cos\left(\frac{\pi}{M}kn\right), \quad k = 0 \text{ or } M,$$

$$h_{k}(n) = 2p_{0}(n)\cos\left(\frac{\pi}{M}kn\right), \quad k = 1, \dots, M-1,$$

$$h'_{k}(n) = 2p_{0}(n-M)\sin\left(\frac{\pi}{M}k(n-M)\right),$$

$$k = 1, \dots, M-1,$$

$$f_{k}(n) = h_{k}(N+M-n), \quad k = 0, \dots, M,$$

$$f'_{k}(n) = h'_{k}(N+M-n), \quad k = 1, \dots, M-1.$$





#### **Choice of parameters**

• M chosen so that suppression of one channel leads to a channel which matches the ONFI-4 notch







# Prototype filter design

- Linear Phase Cosine Modulated Maximally Decimated Filter Banks with Perfect Reconstruction- Yuan-Pei Lin, P. P. Vaidyanathan
- Prototype filter-
- h(n) =

1e-2 [0 0 0 1.87 3.57 5.69 7.85 9.54 10.52 10.95]





## **2M Channel Filter Bank**

• M=7, Cosine Modulated Filter Bank responses





#### **Zero-out one channel**

• If input to one channel is suppressed-





17



#### Conclusion

- Choose M such that suppression of one or more channels leads a channel which resembles the notch
- Transmit the signal over the filter bank suppressing the input to the singled out input
- Transmission over the ONFI-4 channel does not lead to loss of information





#### **Suppression of one input**





#### **Suppression of one input**





**NVM Solutions Group** 

