Does soft-decision ECC improve endurance?

Thomas Parnell IBM Research - Zurich

Outline

- Motivation \bullet
 - Why do we need more endurance?
- Capacity
 - What is channel capacity?
 - How can it be used to compare different error-correction techniques?
- MLC Flash Channel
 - How do we evaluate capacity for MLC Flash devices?
- Experimental Results + Analysis
 - How much endurance gain can soft-decision ECC offer for real MLC devices?
 - Why does the MLC programming algorithm affect capacity?
- Conclusion

Why do we need more endurance?

All-flash storage solutions are gaining momentum in the enterprise sector

HOW?

High performance and rapidly decreasing \$/GB

WHAT IS DRIVING DOWN COST?

In part, the move from SLC \rightarrow eMLC \rightarrow cMLC

ISN'T cMLC VERY UNRELIABLE?

2D cMLC has ~3k P/E cycling endurance

BUT ENTERPRISE NEEDS >20k?

Advanced ECC is required to boost endurance

LDPC codes can make use of "soft" information from Flash to enhance reliability

Channel Capacity (Shannon 1948)

Channel Capacity:

Amount of information (in bits) that channel output (Y) contains about channel input (X) (Maximized over all input distributions)

Channel capacity can be used in two ways:

a) For a given level of channel noise, what ECC rate is required in order to operate reliably? b) For a given ECC rate, how much channel noise can be tolerated?

AWGN Channel: Hard vs. Soft Information

MLC Flash Channel is NOT Memoryless

Calculation of Symmetric Capacity

How much endurance can we gain using soft information?

Endurance (Balanced ECC)

Same ECC rate in upper/lower page:

 $PEC(R) = min(PEC_{L}(R), PEC_{U}(R))$

Endurance (Unbalanced ECC)

- Different ECC rate in upper/lower page:
- $\operatorname{PEC}(R) = \max_{R_L + R_U = 2R} \min(\operatorname{PEC}_{L}(R_L), \operatorname{PEC}_{U}(R_U))$

Why do we only see a small increase in capacity for lower pages?

correct even with soft information

What if we can prevent programming errors?

NO

SLC, TLC, and 3D devices have not been studied

Acknowledgements

IBM - Zurich Research Laboratory

- IBM Research Zurich
- IBM Flash Systems Development (Houston) ${\color{black}\bullet}$
- IBM Systems (San Jose, Poughkeepsie, Raleigh) ${\bullet}$

