

Radiation Effects in SSDs

Enrico Costenaro, Adrian Evans, Dan Alexandrescu, Erwin Schaefer, Cyrille Beltrando, Maximilien Glorieux (name.surname@iroctech.com) IROC Technologies

- Introduction
- Soft Errors in SSDs
- Radiation Testing
- Test Results
- Early Reliability Analysis
- Conclusion

Introduction

Soft Errors are caused by ionizing radiations (neutrons, alpha particles)

- Interaction with silicon
- Charge deposition and collection
- Current spike
- Upset (SEU) or Transient (SET)

Transistor

Charge Collection

- Neutrons (High energy and Thermal) generated by high energy particles, coming from space, entering the atmosphere and interacting with the air (Nitrogen, Oxygen, ...)
- Alpha particles generated by traces of radioactive materials in the packaging materials

- Voltage Effect
 - Lower voltage → increased sensitivity
- Smaller devices
 - Lower target area \rightarrow reduced sensitivity
 - Smaller stored charge → increased sensitivity
- Number of devices (SRAM cells, flip-flops)
 - More devices → increased total sensitivity /
- Transistor type
 - FINFETs show lower sensitivity than planar transistors
- Increased awareness
 - Increased awareness results in more careful design

Soft Errors in SSD

SSD Controller

Image taken from http://webscopia.com/2011/10/what-is-an-ssd-solid-state-disk-basics-and-performance-measures/

Component	Туре	Potential Risk
Mass memory	NAND Flash	Low sensitivity to SER
Controller	ASIC with SRAM and FF	Unprotected SRAM, FF: high sensitivity
Buffer/Cache	DRAM or SRAM	Unprotected SRAM: high sensitivity

Sensitivity by function

- Control path, pointer table: critical items (an error there might not be recoverable)
- Data path: less critical
- Risky time window: when data is transferred through the buffer before reaching NAND Flash (read/write)

Page Buffer → SEUs SEFIs:

- Program errors: complex algorithm, more logic
- Erasing errors: simple, apply a bias for a fixed amount of time
- Read/write errors: block upsets, etc

Flash Memory NAND Flash

- Impact on time spent on erasing/programming
- Charge Pumps failures: (program/erase affected)
 - Temporary, during irradiation, p/e fails
 - Permanent, p/e fails
 - Degradation, p/e completes but takes longer

Image taken from Bagatin et all - Single Event Effects in 1Gbit 90nm NAND Flash Memories under Operating Conditions.pdf

"Comparison of Accelerated DRAM Soft Error Rates Measured at Component and System Level", Borucki et all, IEEE CFP08RPS-CDR 46th Annual International Reliability Physics Symposium, Phoenix, 2008

• Functions

System and chip-level requirements for the maximum acceptable rates of soft errors must be driven by standards (JEDEC JESD218) or customer imposed requirements (Bit Error Rate, QoS, SLA, MTBF ...)

	FII/SSD					
Number						
Deployed SSD	50	100	500			
1000	0.036	0.072	0.36			
5000	0.18	0.36	1.8			
10000	0.36	0.72	3.6			
50000	1.8	3.6	18			
100000	3.6	7.2	36			
500000	18	36	180			
1000000	36	72	360			

Errors per month

Radiation Testing

To evaluate the sensitivity of SSD

- 2 Radiation Test Campaigns were performed at TSL using the ANITA Beam Line (10 SDDs Tested)
- The ANITA beam line reproduces the natural neutron spectrum (neutron energy distribution) but with an higher flux
- Higher Flux → reproduce the effect of thousands of device hours in minutes

- SSD Tester
 - Workstation with Linux operating system
 - SSD accessed as blocks (2048 bits)
 - Allow detection of: brick, hang, flying write, bit errors,
- Golden Device
 - Measure beam attenuation and alignment
- Whole device irradiated
 - Dose effects in DRAM not evaluated
 - Collimated test on controller (next campaign)

Test Results

10 SSD Tested

- 6 Manufacturers
- 60 to 256 GB
- SATA III Interface

- Read/Write Error error message returned by the kernel no data read or written from/in the device
- Hang the device stop working, function resumed after power cycle
- **Brick** the device stop working, function can't be resumed
- Silent Error error detected by the tester but not reported by the kernel

Radiation Test Results

FIT/SSD

Deployed SSD	10	50	100	500		
1k	0.0072	0.036	0.072	0.36		
5k	0.036	0.18	0.36	1.8		
10k	0.072	0.36	0.72	3.6		
50k	0.36	1.8	3.6	18		
100k	0.72	3.6	7.2	36		
500k	3.6	18	36	180		
1 M	7.2	36	72	360		
5M	36	180	360	1800		
10 M	72	360	720	3600		
Memory Summit 2015	ERROR per Month					

- Persistent failing block (write error)
 - Most of the time fixed after secure erase
- Write operation longer than normal (in some cases lead to a brick)
- Flying write: data written at the wrong location (considered Silent Error)

Early Reliability Analysis

Radiation testing is useful for validation and qualification purposes but...

...requires the device to be manufactured

During the design phase – simulation tools are needed

sh Memory ASIC Level Analysis (cont.)

- Not all SEEs manifest themselves as faults
- Derating factors are significant (often only 1%..10% of SEUs have an observable effect)
- Controller level:
 - TIFT evaluates the sensitivity of the technology
 - SOCFIT accurately calculates derating factors
- SSD level: FMEA approach using database of SER results and experience (and test results)

Conclusion

- Test results prove the importance of rigorous testing
 - Accurate SER data to integrate in the reliability datasheets and to report to customers
 - Prove successful fulfillment of design targets
 - Standards: JEDEC JESD218
 - Requirements: Bit Error Rate, QoS, SLA, MTBF
 - Suggest recovery actions to improve the overall system reliability
 - Ultimately ... discover vulnerable or critical issues before customers do

- Testing needs the manufactured device
 - During the design phase simulation tools are needed
 - TFIT → Cell level
 - SoCFIT \rightarrow Chip level
 - FMEA → System level
 - Simulation allows to understand test results

www.iroctech.com

enrico@iroctech.com

Backup Slides

Read/Write Errors (detected)

Radiation Test Results

Radiation Test Results Brick

Radiation Test Results Silent Errors

