
How Systems Benefit
from Record Low Latencies

Doug Voigt,
Hewlett Packard (Enterprise)

Flash Memory Summit 2015
Santa Clara, CA 1

Contents

Flash Memory Summit 2015
Santa Clara, CA 2

 Application views of persistent memory
 Benefit of RAM disk access
 Benefit of Ld/St access
 Benefit of disaggregated persistent memory

Persistent memory as NVRAM Disk

Flash Memory Summit 2015
Santa Clara, CA 3

Application

Persistent Memory

BufferComputation Variables

NVRAM Disk Driver

Ideal NVRAM Disk Access Efficiency

Flash Memory Summit 2015
Santa Clara, CA 4

 Compare disk array access with PM access
 Input current disk array benchmark results

• Throughput
• Response time
• Thread count

 Derive application think time per IO for various CPU utilizations
• Assume constant driver overhead
• Use above inputs to compute application time in each thread model case
• Vary Demand (Gby/Hr), CPU Utilization

 Compare resulting CPU utilization deltas
• CPU bound proxy
• IO Bound proxy

CPU Bound Use Case:
Open Loop IO

5

app dvr

CPU time = app + dvr, unlimited threads

dvr
dvr

app
app

Thread 1

Thread 2

Thread N

IO

IO
IO

IO in parallel with next thread

Driver Time

Application Think Time

IO Bound Use Case:
Closed Loop Threads

Flash Memory Summit 2015
Santa Clara, CA 6

app dvr

CPU time = app + dvr, limited threads

dvr
dvr

app
app

Thread 1
Thread 2
Thread 3 IO

IO
IO

IO

IO runs after queueing delay

Driver Time
Application Think Time

CPU Idle Time

Persistent Memory Use Case:
Always CPU/Memory Bound

Flash Memory Summit 2015
Santa Clara, CA 7

app

CPU time = app only, CPU bound

app
app

Thread 1
Thread 2

Thread 3

Application Think Time is all that’s left

Optional context switches

Application Think Time Paradox

Flash Memory Summit 2015
Santa Clara, CA 8

 Actual application think times are processor and application specific
 Use CPU utilization assumption instead – Creates a reading problem…

• Suppose a CPU core is doing X operations per second
• and each operation wastes Y microseconds (driver time).
• If the current CPU utilization is Z%,
• how much more work could be accomplished with Z% CPU utilization if Y were 0 (no driver

overhead)

 Use real storage product latency vs. throughput measurements for
comparison
• As IOPs increase the CPU spends more and more total time in the driver
• Amount of additional work (gain) has asymptote as driver overhead consumes entire core

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

G
ai

n

GBy/H

Gain at 40% utilization, 8K random

CPU Bound

IO Bound

Example gain curve

Flash Memory Summit 2015
Santa Clara, CA 9

Asymptote

With 0 driver overhead
CPU could do 10x the work

= 700 Gby/H

Decreasing Application Think Time

Primary Result for IO Bound
Disk Array Workload, 120 uS Driver

Flash Memory Summit 2015
Santa Clara, CA 10

0
5

10
15
20
25

30

35

40

10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0

14
0

15
0

16
0

17
0

18
0

19
0

G
ai

n

GBy/H

Threaded Gain from PM, 8K Random

20%

40%

60%

80%

Expect 5-10x gain
when operating near,
but not too near,
saturation.

Primary Result for IO Bound
PCIe Flash Workload, 20 uS Driver

Flash Memory Summit 2015
Santa Clara, CA 11

Very similar shape but
on a different scale
with elongated slope.

0
5

10
15
20
25

30

35

40

60
12

0
18

0
24

0
30

0
36

0
42

0
48

0
54

0
60

0
66

0
72

0
78

0

84
0

90
0

96
0

10
20

10
80

11
40

G
ai

n

GBy/H

Threaded Gain from PM, 8K Random

20%

40%

60%

80%

Conclusion for PM RAM Disk
Which Applications Benefit:

Flash Memory Summit 2015
Santa Clara, CA 12

 IO Bound
• CPU bound workloads benefit less
• PM turns previously IO bound workloads into CPU bound workloads

Small Random Write
• Sequential has lower overhead per Gby/H
• Sequential lends itself to more efficient caching
• Read intensive workloads are easily managed with caching

 Low Application Think Time
• High application think times become CPU bound more quickly

Persistent memory as Ld/St

Flash Memory Summit 2015
Santa Clara, CA 13

Application

Persistent Memory

Computation Variables

Stored
In PM

NVM Programming Model Example

Flash Memory Summit 2015
Santa Clara, CA 14

User
Space

Kernel
Space

PM Aware
Application

PM-Aware
File System

MMU
Mapp
ings

Persistent Memory

PM data structure
libraries

Middleware features
e.g. RAID

File APIs Mem ops

Flash Memory Summit 2015
Santa Clara, CA

NVMP stack with libraries and HA

Flash Memory Summit 2015
Santa Clara, CA 15

 PM data structure libraries make it easy to implement native PM data structures
• Memory Mapped - allocate data structures from PM space within files
• PM data structures can be manipulated by libraries using standard language features
• Can be transactional – well defined commit points

 PM libraries and middleware hide complexity from applications such as
• Sync – Flush CPU write pipeline to persistence domain
• RAID (or erasure coding) – File system creates redundancy during sync

 However, Sync tends to interfere with optimal CPU performance
• Invalidates cache lines, Causes remote access (for HA)

 How can sync disruption be mitigated?
• Use Optimized Flush to delay and batch syncs into consistency points
• Orchestrate recovery after failure to most recent consistency point
• Similar to “Recover Point Objective” common in disk based disaster recovery systems

Conclusion for Ld/St
Which applications benefit:

Flash Memory Summit 2015
Santa Clara, CA 16

 Applications that use persistent memory data structures
 Applications that can group data structure manipulations into consistency points

• Similar to transaction commits in classical databases

 Applications that can backtrack to the most recent commit point after failure
• Exception handling replaces IO status
• Avoid system restart on memory error

 Applications that use proven PM libraries to encapsulate complexity

Disaggregated Persistent Memory

Flash Memory Summit 2015
Santa Clara, CA

17

Application

Computation Variables

CPU
Application

Computation Variables

CPU

Memory
Controller

Persistent Memory

Non-Cache-Coherent memory sharing

Flash Memory Summit 2015
Santa Clara, CA 18

 Ld/St access per processor complex with cluster style logic across nodes
 Replace message passing with memory mapping of shared pool

Application

Computation Variables

CPU
Application

Computation Variables

CPU

RDMA Copy

“Shared Nothing” Clustering

Memory
Controller

Application

Computation Variables

CPU
Application

Computation Variables

CPU

“Shared Pool” Clustering

Pass Permission

Overall Conclusion
Which applications benefit:

Flash Memory Summit 2015
Santa Clara, CA 19

NVRAM Disk
• IO Bound
• Small Random Write
• Low Application Think Time

Persistent memory data structures
• Use them
• Group data structure manipulations into consistency points
• Backtrack to the most recent commit point after failure

Share cluster pooled memory instead of copying

Thank You

Flash Memory Summit 2015
Santa Clara, CA 20

	How Systems Benefit �from Record Low Latencies
	Contents
	Persistent memory as NVRAM Disk
	Ideal NVRAM Disk Access Efficiency
	CPU Bound Use Case:�Open Loop IO
	IO Bound Use Case: �Closed Loop Threads
	Persistent Memory Use Case:�Always CPU/Memory Bound
	Application Think Time Paradox
	Example gain curve
	Primary Result for IO Bound�Disk Array Workload, 120 uS Driver
	Primary Result for IO Bound�PCIe Flash Workload, 20 uS Driver
	Conclusion for PM RAM Disk�Which Applications Benefit:
	Persistent memory as Ld/St
	NVM Programming Model Example
	NVMP stack with libraries and HA
	Conclusion for Ld/St�Which applications benefit:
	Disaggregated Persistent Memory
	Non-Cache-Coherent memory sharing
	Overall Conclusion�Which applications benefit:
	Thank You

