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Persistent memory as NVRAM Disk
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Ideal NVRAM Disk Access Efficiency
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 Compare disk array access with PM access
 Input current disk array benchmark results

• Throughput
• Response time
• Thread count

 Derive application think time per IO for various CPU utilizations
• Assume constant driver overhead
• Use above inputs to compute application time in each thread model case
• Vary Demand (Gby/Hr), CPU Utilization

 Compare resulting CPU utilization deltas
• CPU bound proxy
• IO Bound proxy



CPU Bound Use Case:
Open Loop IO
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IO Bound Use Case: 
Closed Loop Threads
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Persistent Memory Use Case:
Always CPU/Memory Bound
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Application Think Time Paradox
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 Actual application think times are processor and application specific
 Use CPU utilization assumption instead – Creates a reading problem…

• Suppose a CPU core is doing X operations per second
• and each operation wastes Y microseconds (driver time).
• If the current CPU utilization is Z%,
• how much more work could be accomplished with Z% CPU utilization if Y were 0 (no driver 

overhead)

 Use real storage product latency vs. throughput measurements for 
comparison
• As IOPs increase the CPU spends more and more total time in the driver
• Amount of additional work (gain) has asymptote as driver overhead consumes entire core
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Asymptote

With 0 driver overhead
CPU could do 10x the work

= 700 Gby/H

Decreasing Application Think Time



Primary Result for IO Bound
Disk Array Workload, 120 uS Driver

Flash Memory Summit 2015
Santa Clara, CA 10

0
5

10
15
20
25

30

35

40

10 20 30 40 50 60 70 80 90
10

0
11

0
12

0
13

0

14
0

15
0

16
0

17
0

18
0

19
0

G
ai

n

GBy/H

Threaded Gain from PM, 8K Random

20%

40%

60%

80%

Expect 5-10x gain 
when operating near, 
but not too near, 
saturation.



Primary Result for IO Bound
PCIe Flash Workload, 20 uS Driver
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Very similar shape but 
on a different scale 
with elongated slope.
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Conclusion for PM RAM Disk
Which Applications Benefit:
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 IO Bound
• CPU bound workloads benefit less
• PM turns previously IO bound workloads into CPU bound workloads

Small Random Write
• Sequential has lower overhead per Gby/H
• Sequential lends itself to more efficient caching
• Read intensive workloads are easily managed with caching

 Low Application Think Time
• High application think times become CPU bound more quickly



Persistent memory as Ld/St
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NVM Programming Model Example
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NVMP stack with libraries and HA
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 PM data structure libraries make it easy to implement native PM data structures
• Memory Mapped - allocate data structures from PM space within files
• PM data structures can be manipulated by libraries using standard language features
• Can be transactional – well defined commit points

 PM libraries and middleware hide complexity from applications such as
• Sync – Flush CPU write pipeline to persistence domain
• RAID (or erasure coding) – File system creates redundancy during sync

 However, Sync tends to interfere with optimal CPU performance
• Invalidates cache lines, Causes remote access (for HA)

 How can sync disruption be mitigated?
• Use Optimized Flush to delay and batch syncs into consistency points
• Orchestrate recovery after failure to most recent consistency point
• Similar to “Recover Point Objective” common in disk based disaster recovery systems



Conclusion for Ld/St
Which applications benefit:
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 Applications that use persistent memory data structures
 Applications that can group data structure manipulations into consistency points

• Similar to transaction commits in classical databases

 Applications that can backtrack to the most recent commit point after failure
• Exception handling replaces IO status
• Avoid system restart on memory error

 Applications that use proven PM libraries to encapsulate complexity



Disaggregated Persistent Memory
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Non-Cache-Coherent memory sharing
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 Ld/St access per processor complex with cluster style logic across nodes
 Replace message passing with memory mapping of shared pool
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Overall Conclusion
Which applications benefit:
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NVRAM Disk
• IO Bound
• Small Random Write
• Low Application Think Time

Persistent memory data structures
• Use them
• Group data structure manipulations into consistency points
• Backtrack to the most recent commit point after failure

Share cluster pooled memory instead of copying



Thank You
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