Best practices for using flash in
hyperscale software storage architectures

Brandon Hoang
Solutions Architect

QP HEDVIG

Flash Memory

Ciimmrmmit ON1 R



Flash Memory

Ciimmrmmit ON1 R n



\ /4

nai}-Me;fm Software-Defined Storage (SDS)

- S

Commodity Servers Software

Software-Defined
Storage

Double-digit growth
A $2.8 billion market by 2017

IDC 2015
Flash Memory

Ciimmrmmit ON1 R



M

FlashMemory \\/ho is Hedvig?

« Founded in 2012 by Avinash
Lakshman
— Co-inventor of Amazon Dynamo and
inventor of Apache Cassandra
» Develop the Hedvig
Distributed Storage Platform

— A software-defined storage solution

2012-present

2007-2011

2004-2007

Flash Memory
Cirimarait ON1 K N



4
\\..'/

FlashMemory Anatomy of a distributed, hyperscale
=3 © gforage system

Application
tier

Hosts access
storage tier via
storage proxies

Each node hosts:
} *Metadata
*Data

ErmmTy |
Scale-out ey SENS SHNGS SHIGES SHENH SHRUH SHRG
storage tier with SSr SR SRR S S S S
commodity servers EESENY SESRNY SENUE SENTY SENTY TENIDTY ST
TN ENAK ISR [T W Y TR TR

Flash Memory

Cirimarait ON1 K



SsSuUMIMIT

FlashMemory Taking advantage of flash w/ SDS

« At the storage server node

— Store metadata on SSD: fast lookups and tracking
— Write-optimization: sequentialize random I/O

— Auto-tier and cache active data on SSDs: speed access
to hot data and buffer HDD capacity tier

— Provision volumes on “all-flash” persistent storage (aka
“pin to flash™): dedicated, consistent performance for
latency sensitive apps

At the application host

— Cache hot data on local SSD or PCle flash to accelerate
access and avoid network latencies

Flash Memory

Ciimmrmmit ON1 R fag



) 4

- Biggest flash benefit to hyperscale:
Fi
o Sequentializing random /O

Application Server

Application writes data in random
Hyperscale client a blocks, and gets immediate ack from

cluster
| Storage cluster sequentializes incoming
e blocks (in RAM+SSD) into larger
[ . ] chunks
Z | AN

Larger sequentialized data chunks
written to underlying disks according to

policy

!
/ N\ o

Hyperscale nodes

Flash Memory

Ciimmrmmit ON1 R 4



M/

Haslee(nmy Three ways flash is used in hyperscale

systems

Read/write cache on Pm to flash” dedicated Client side read cache
storage nodes primary storage volume



M

RashMemory Option #1: Node OS storage

Type of flash:
SLC/MLC SSDs or PCle Flash

Use of flash:

-- Store metadata for fast
operations — dedupe,
compression, snaps, clones

-- Autotiering to ensure hot data is
migrated to

flash

-- Write logs for metadata and data

Typical configuration:
Read/write cache on 2x 300GB MLC SAS/SATA SSDs
storage nodes



M

RashMemory QOption #2: Node volume storage

Type of flash:
SLC/MLC SSDs or PCle Flash

Use of flash:

-- All-flash virtual volumes

for dedicated, consistent
performance on a per-app
basis

-- Flash performance for read
and write operations

Typical configuration:
2x 800GB MLC SAS/SATA

“Pin to flash” dedicated
primary storage volume



M

RashMemory Option #3: Client-side cache

Tvpe of flash:
SLC/MLC SSDs or PCle Flash

Use of flash:

-- Write-through cache to
store hot blocks

-- Local metadata storage

Typical configuration:
800GB MLC SAS/SATA SSDs

Client side read cache



! |

rlasnMemory Results: Law Firm _Higher IOPS with

52500

Challenge

Needed quick, reliable indexing and lookups of massive 100
million active client legal docs 17500

— Traditional NAS underperformed required access time
— Standalone servers with flash performed well, but predictably

35000

ran out of space

Lower latency with
cli ide flash

Solution/Result:

— Hedvig software-defined storage with SSD/HDD and client-
side flash caching abs

— ~9x faster performance with flash
— Scale-out architecture simplifies growth and expansion

ds

0 No flash. T With flash
millisecon

Flash Memory

Ciimmrmmit ON1 R



For more on Hedvig visit:
*\WWeb: hedviginc.com
*Twitter: @hedviginc

P

" Thank you! HEDVIG

Flash Memory

Ciimmrmmit ON1 R



