

Best practices for using flash in hyperscale software storage architectures

Brandon Hoang
Solutions Architect

Memory Software-Defined Storage (SDS)

Double-digit growth
A \$2.8 billion market by 2017

IDC 2015

Flash Memory Who is Hedvig?

- Founded in 2012 by Avinash Lakshman
 - Co-inventor of Amazon Dynamo and inventor of Apache Cassandra
- Develop the Hedvig Distributed Storage Platform
 - A software-defined storage solution

Flash Memory Summit 2015

Anatomy of a distributed, hyperscale storage system

Memory Taking advantage of flash w/ SDS

At the storage server node

- Store metadata on SSD: fast lookups and tracking
- Write-optimization: sequentialize random I/O
- Auto-tier and cache active data on SSDs: speed access to hot data and buffer HDD capacity tier
- Provision volumes on "all-flash" persistent storage (aka "pin to flash"): dedicated, consistent performance for latency sensitive apps

At the application host

Cache hot data on local SSD or PCle flash to accelerate access and avoid network latencies

Biggest flash benefit to hyperscale: Sequentializing random I/O

Application Server

Flash Memory

Summit 2015

Three ways flash is used in hyperscale systems

Read/write cache on storage nodes

"Pin to flash" dedicated primary storage volume

Client side read cache

Memory Option #1: Node OS storage

SLC/MLC SSDs or PCle Flash

Use of flash:

- -- Store metadata for fast operations dedupe, compression, snaps, clones
- -- Autotiering to ensure hot data is migrated to flash
- -- Write logs for metadata and data

Typical configuration:2x 300GB MLC SAS/SATA SSDs

Read/write cache on storage nodes

ent side read cache

Memory Option #2: Node volume storage

Type of flash: SLC/MLC SSDs or PCle Flash

Use of flash:

- -- All-flash virtual volumes for dedicated, consistent performance on a per-app basis
- -- Flash performance for read and write operations

Typical configuration:
2x 800GB MLC SAS/SATA
SSDs

Client side read cache

Read/write cache on storage nodes "Pin to flash" dedicated primary storage volume

Option #3: Client-side cache

Typical application server can deliver 65K IOPs vs. 15K without flash

Type of flash: SLC/MLC SSDs or PCle Flash

Use of flash:

- -- Write-through cache to store hot blocks
- -- Local metadata storage

Typical configuration: 800GB MLC SAS/SATA SSDs

Read/write cache on storage nodes "Pin to flash" dedicated primary storage volume

Client side read cache

Results: Law Firm

Challenge:

- Needed quick, reliable indexing and lookups of massive 100 million active client legal docs
- Traditional NAS underperformed required access time
- Standalone servers with flash performed well, but predictably ran out of space

Solution/Result:

- Hedvig software-defined storage with SSD/HDD and clientside flash caching
- ~9x faster performance with flash
- Scale-out architecture simplifies growth and expansion

For more on Hedvig visit:

- •Web: hedviginc.com
- •Twitter: @hedviginc

