

Achieving Consistent Low Latency with All-Flash Arrays

Brian McKean

Netapp

E-Series Flash Architect

Memory Two worlds for Latency

	Dedicated Application Hardware	Shared Storage
Average Latency	<0.5 ms	<1 ms
Latency Sensitivity	Very Sensitive to spikes	Less sensitive to spikes
Feature use	Light	Heavy
Key Metric	\$/IOP	\$/GB Effective

Session 302-B: Flash Arrays Part 2 (Enterprise Storage Track)
All-Flash Array Market Segmentation
Manish Agarwal, Director Product Management, NetApp

Share Storage Feature Rich

Single Application – Dedicated Hardware

How do we keep latency low in All Flash Arrays?

Function	Size	Time	
Erase	256 KB	2 ms	
Write	4 KB	200 usec	We want to keep read and write to
Read	4 KB	50 usec	near flash speeds

Storage Stack

Latency in the storage system

- Conflict with Flash media operations
 - Read/write waiting for for a 2 ms erase
- 2. Complexity of Storage Management Features
 - Layers of indirection & mapping
 - Multiple media accesses

Handling Media Access Conflicts

Within Device

- 1. Flash lanes and flash controllers
- 2. CPU / RAM
- 3. Over provisioning flash capacity

Handling Media Access Conflicts

SSD & Storage System Together

- 1. Sequential write patterns
- 2. Access other devices
- 3. SCSI Stream commands

Handling Latency from Storage System features

- Replication
 - Snapshots
 - Clones

- Latency mitigation
 - Built into architecture
 - Hardware Assist
 - More cores
 - More DRAM
 - Higher performing SSD

Handling Latency from Storage System features

- Resiliency
 - Erasure codes /RAID
 - Replication

- Latency mitigation
 - Hardware Assist
 - More cores
 - Specialized HW
 - NV Mirror
 - Higher performing SSD
 - RAID Level choice
 - Full stripe writes

Handling Latency from Storage System features

- Efficiency
 - Thin provisioning
 - Compression
 - De-duplication

- Latency mitigation
 - Built into architecture
 - IHardware Assist
 - More cores
 - More RAM
 - Specialized HW
 - Higher performance SSD
 - Fewer IO to SSD from efficiency

NetApp EF-Series Latency Optimization

Storage System Features

Resiliency

- SANtricity OS
- Custom drivers
- Streamlined IO Path
- Direct mapped
- Mirrored NVRAM
- Hardware assist for erasure coding

Top 5 SPC-1 Price-Performance #1 SPC-1 LRT

Media Access Conflicts

SSD Selection & Qualification

- Over provisioning
- Flash lanes / device
- CPU/RAM

All Flash FAS Latency Optimization

Storage System Features

Replication

Resiliency

Efficiency

- Data ONTAP OS
- Features Built into the Architecture
- Cores & DRAM, Mirrored NVRAM
- Flash Optimized Read IO Path
- Efficient Sequential Write Streams

Top 5 SPC-1 Performance

Media Access Conflicts

SSD Selection & Qualification

- Less Over provisioning
- Flash lanes / device
- CPU/RAM

- Multiple approaches to developing an architecture for low latency
- No single feature is key for low latency
- Look for features and performance to fit your application needs