



### Building a High IOPS Flash Array: A Software-Defined Approach

Weafon Tsao Ph.D. VP of R&D Division, AccelStor, Inc.



### **Clarification**

**SSDs** are not the only hardware component of all-flash array

- <u>Network adaptors</u> connect user applications with SSDs
- <u>Processors</u> glue SSDs and network adaptors together



## Myth 2: Off-the-shelf SW + SSD = High IOPS Flash Array

### **Clarification**

# Off-the-shelf SW/Technology may become the bottleneck

- Data redundancy
- Volume management/snapshot
- HA/scale out
- De-dup/compress

# ory The Root of Challenge: Random IO

 Random IO cannot be merged into a big chunk
 ⇒ cause large overheads
 ⇒ impact the HW/SW design



Assume other components are not bottlenecks under each of the 4 tests



### Build a high random IOPS all-flash array

### with rich enterprise storage features

### on commodity hardware?



- A. Leverage latest generation hardware or hardware-offloading
- B. Consume all the hardware resources
  - Considerate configuration
  - Multi-thread programming
- C. Minimize overheads on
  - RAID5
  - Snapshot
  - HA/scale out
  - ...



# A. Leverage the Latest Generation of HW or HW-offloading

- NVMe, RDMA
- The performance of commodity hardware is limited.
- Commodity hardware are mainly designed for mainstream market with manufacturing cost consideration.





#### Considerately balance SW/HW IRQs on

- HBA

- Network: Ethernet / FC / InfiniBand



| 09:31:33 A | M CPU |      | %nice | <b>%</b> svs | %iowait | %ira | %soft  | <b>%stea</b> l | %muest | %idle |
|------------|-------|------|-------|--------------|---------|------|--------|----------------|--------|-------|
| 09:31:34 A | M all | 0.02 | 0.00  | 3.21         | 8.23    | 0.00 | 2.26   | 0.00           | 0.00   | 86.27 |
| 09:31:34 A | M 0   | 0.00 | 0.00  | 0.00         | 0.00    | 0.00 | 100.00 | 0.00           | 0.00   | 0.00  |
| 09:31:34 A | M 1   | 0.00 | 0.00  | 12.00        | 0.00    | 0.00 | 0.00   | 0.00           | 0.00   | 88.00 |
| 09:31:34 A | M 2   | 0.00 | 0.00  | 12.87        | 0.00    | 0.00 | 0.00   | 0.00           | 0.00   | 87.13 |
| 09:31:34 A | M 3   | 0.00 | 0.00  | 0.00         | 0.00    | 0.00 | 0.00   | 0.00           | 0.00   | 0.00  |
| 09:31:34 A | M 4   | 0.75 | 0.00  | 0.00         | 0.00    | 0.00 | 0.00   | 0.00           | 0.00   | 99.25 |



## Leverage the Power of Multi-core CPU

#### Multi-thread programming is necessary

| PID | %usr | %system | %guest | %CPU   | CPU | Command    |
|-----|------|---------|--------|--------|-----|------------|
| 687 | 0.00 | 100.00  | 0.00   | 100.00 | 10  | md0_raid10 |
| 750 | 0.00 | 100.00  | 0.00   | 100.00 | 21  | aw0        |
| 751 | 0.00 | 100.00  | 0.00   | 100.00 | 22  | aw1        |
| 752 | 0.00 | 100.00  | 0.00   | 100.00 | 23  | aw2        |
| 753 | 0.00 | 2.00    | 0.00   | 2.00   | 33  | pidstat    |





Overhead: Parity check update Solution: Write buffer? Low hit ratio for random WRITE

If you want to write B2

 $B_p^{new} = B2^{old} \text{ xor } B_p^{old} \text{ xor } B2^{new}$  W = R = W $1W \Rightarrow 2R + 2W$ 





# FlexiRemap Technology: 1M IOPS with Space-Efficient Data Protection

Compared to conventional RAID configuration:

 More efficient and effective redundancy without performance and lifespan penalty for SSDs

- Automatic workload redirection upon SSD failure



- 20 SSDs (55K IOPS)

- RAID50: 10 SSDs per group
- FlexiRemap: 10 SSDs per group
- accessed range: 80GB
- accessed amount: 40GB
- cache disabled



- Overhead: small random WRITE
- Solution: small chunk with low overhead

16MB block size -> copy 16MB per 4KB write 4KB block size -> the overhead to allocate new block per 4KB write is too large





# FlexiRemap Technology: Small Chunk with Low Overhead





# **NeoSapphire All-Flash Array Series**

#### **NeoSapphire All-Flash Array Series**

- High performance with up to 1M IOPS for 4KB random write
- Fault tolerance and automatic data reconstruction upon drive replacement
- Low TCO with excellent performance and energy efficiency
- Web-based graphical management interface for simplified system setup, health monitoring and management







#### About AccelStor

Building upon its expertise in software and storage technology, AccelStor is devoted to unleashing the true performance of flashbased storage solutions with a softwaredefined approach. AccelStor has developed an exclusive FlexiRemap software technology that enables its storage arrays to achieve unparalleled scalability, performance, and efficiency in the same grade as such products.

#### **Core Competence**

- Innovations beyond Technical Fluency
- Dedication to Success
- Agility

#### **Management team**

- President: Charles Tsai Ph.D.
- Vice President: Weafon Tsao Ph.D.
  Website
  www.accelstor.com

Email

inquiry@accelstor.com





- Visit us at booth #810
- Check out our live demonstration
  - AccelStor FlexiRemap technology
  - AccelStor NeoSapphire All-Flash Array
- Tell us about your applications
- Book your samples
- Customization requests are welcome!