

Spin Transfer Technologies An Allied Minds Company

Orthogonal Spin Transfer (OST) A Better Approach

Flash Memory Summit August 2015

Background

History

- Formed in 2007 by Allied Minds and NYU to commercialize Orthogonal Spin Transfer (OST) MRAM research done by Professor Andrew Kent
- In 2012, raised \$36 million financing and opened Silicon Valley headquarters
- October, 2014 raised additional \$70 million financing

Technology

- OST-MRAM is a disruptive innovation in the field of spin transfer MRAM devices and offers advantages over other MRAM
- Higher speed, lower cost, lower power consumption, higher reliability, and enhanced lithographic scalability

Opportunity

- Served Market Opportunity of \$150 Billion in 2015
- Targeted as a replacement for DRAM, SRAM or flash memory
- Markets in storage systems, mobile devices, computing, microcontrollers and SOCs in standalone or embedded configurations

Magnetic Tunnel Junction with Collinear Spin Filter

Getting the 'write' started in Collinear Spin Torque

1.6

Collinear Spin Transfer – In a Performance Box

Write Error Rate (WER) →Cost, i.e. ECC Write Voltage \rightarrow Power and Endurance

Write Pulse Width →Performance and Power

Magnetic Tunnel Junction with Orthogonal Spin Filter

Reading - reference @ low current Writing - 'collinear spin filter' @ high current

Magnetic data...'left' or 'right'

Writing - 'orthogonal spin filter' @ high current

Strong perpendicular component to 'spin polarization field' instantaneously starts switching of magnetic data in free layer

"Reference" Layer **Tunnel Barrier** "Free" Layer **Orthogonal Spin**

Not to scale

OST Technology Benefits And Advantages vs. Collinear

